Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Quantification of calcium, phosphorus, and cerium in novel biocompatible materials by total reflection X-ray fluorescence spectroscopy

https://doi.org/10.26896/1028-6861-2023-89-5-14-18

Abstract

An approach to the determination of the composition of novel biocompatible materials based on cerium-containing calcium phosphates by TXRF is proposed. The ranges of analyte contents in solutions for the correct determination of Ca, P, Ce by the external standard method were determined. A systematic underestimation of the calcium signal at a Ca content in the analyzed composite sample above 30 mg/liter is noted. The Compton scattering spectra for the ceramic sample solution were analyzed to assess the compliance of the sample with the thin layer criterion, the maximum value was 16. 8 keV (96°). According to the graph of the mass attenuation coefficient for a film of a given composition, the attenuation of the calcium line is not related with the absorption effect of the sample. The internal standards (Gd and Cu) were selected and conditions for the determination of micro- and macro-components in solutions and suspensions of samples were determined. It is shown that with a calcium content up to 50 mg/liter in the sample, it is possible to determine correctly Ca, P, and Ce by TXRF method in solutions and suspensions with Sr 0.05 and 0.09, respectively. The convergence of the results obtained is noted by the methods of external and internal standards with appropriate dilutions of solutions and suspensions.

About the Authors

A. A. Samoilova
Lomonosov Moscow State University
Russian Federation

Alina A. Samoilova

1-3, Leninskiye Gory, Moscow, 119991



N. V. Petrakova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Nataliya V. Petrakova

49, Leninsky prosp., Moscow, 119334



N. A. Andreeva
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Nadezhda A. Andreeva

49, Leninsky prosp., Moscow, 119334



T. N. Penkina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Tatiyana N. Penkina

49, Leninsky prosp., Moscow, 119334



S. G. Dorofeev
Lomonosov Moscow State University
Russian Federation

Sergey G. Dorofeev

1-3, Leninskiye Gory, Moscow, 119991



D. G. Filatova
Lomonosov Moscow State University ; Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Dariya G. Filatova

1-3, Leninskiye Gory, Moscow, 119991; 49, Leninsky prosp., Moscow, 119334



References

1. Zhou H., Yang L., Gbureck U., et al. Monetite, an important calcium phosphate compound — Its synthesis, properties and applications in orthopedics / Acta Biomater. 2021. Vol. 127. P. 41 – 55. DOI: 10.1016/j.actbio.2021.03.050

2. Ressler A., Ivanišević I., Žužić A., Somers N. The ionic substituted octacalcium phosphate for biomedical applications: A new pathway to follow? / Ceram. Int. 2022. Vol. 48. N 7. P. 8838 – 8851. DOI: 10.1016/j.ceramint.2021.12.126

3. Yilmaz B., Alshemary A. Z., Evis Z. Co-doped hydroxyapatites as potential materials for biomedical applications / Microchem. J. 2019. Vol. 144. P. 443 – 453. DOI: 10.1016/j.microc.2018.10.007

4. Ghosh R., Das S., Mallick S. P., Beyene Z. A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications / Mater. Today Commun. 2022. Vol. 3. P. 2352 – 4928. DOI: 10.1016/j.mtcomm.2022.103311

5. Wang C., Liu Y., Zhang Y., et al. Synthesis, photothermal effects, and antibacterial properties of lanthanum-doped hydroxyapatite / Ceram. Int. 2023. Vol. 49. N 7. P. 11378 – 11392. DOI: 10.1016/j.ceramint.2022.11.337

6. Zhang Y., Hu M., Zhang W., Zhang X. Research on rare earth doped mesoporous bioactive glass nanospheres. I. Similarity of in vitro biological effects / J. Non-Cryst. Solids. 2022. Vol. 587. 121586. DOI: 10.1016/j.jnoncrysol.2022.121586

7. Nisar A., Iqbal S., Rehman M., et al. Study of physico-mechanical and electrical properties of cerium doped hydroxyapatite for biomedical applications / Mater. Chem. Phys. 2023. Vol. 299. 127511. DOI: 10.1016/j.matchemphys.2023.127511

8. Liu J., Zhou X., Zhang Y., et al. Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material / Mater. Today Chem. 2022. Vol. 23. 100735. DOI: 10.1016/j.mtchem.2021.100735

9. Padmanabhan V. P., Kulandaivelu R., Nellaiappan S. N. T. S., et al. Facile fabrication of phase transformed cerium (IV) doped hydroxyapatite for biomedical applications — A health care approach / Ceram. Int. 2020. Vol. 46. N 2. P. 2510 – 2522. DOI: 10.1016/j.ceramint.2019.09.245

10. Ciobanu G., Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants / Ceram. Int. 2019. Vol. 45. N 2. Part B. P. 2852 – 2857. DOI: 10.1016/j.ceramint.2018.07.290

11. Banerjee S., Bagchi B., Pal K., et al. Essential oil impregnated luminescent hydroxyapatite: Antibacterial and cytotoxicity studies. / Mater. Sci. Eng.: C. 2020. Vol. 116. 111190. DOI: 10.1016/j.msec.2020.111190

12. Yuan Sh., Qi X., Zhang He., et al. Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells / Chem.-Biol. Interact. 2021. Vol. 346. 109579. DOI: 10.1016/j.cbi.2021. 109579

13. Brahimi S., Ressler A., Boumchedda K., et al. Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. / Mater. Chem. Phys. 2022. Vol. 276. 125421. DOI: 10.1016/j.matchemphys.2021.125421

14. Bazin T., Magnaudeix A., Mayet R., et al. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. / Ceram. Int. 2021. Vol. 47. N 10. Part A. P. 13644 – 13654. DOI: 10.1016/j.ceramint.2021.01.225

15. Ullah Ih., Siddiqui M. A., Kolawole Sh. K., et al. Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application / Ceram. Int. 2020. Vol. 46. N 10. Part A. P. 14448 – 14459. DOI: 10.1016/j.ceramint.2020.02.242

16. Priyadarshini B., Vijayalakshmi U. Development of cerium and silicon co-doped hydroxyapatite nanopowder and its in vitro biological studies for bone regeneration applications / Adv. Powder Technol. 2018. Vol. 29. N 11. P. 2792 – 2803. DOI: 10.1016/j.apt.2018.07.028

17. Szoboszlai N., Polgári Z., Mihucz V. G., Záray G. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications / Anal. Chim. Acta. 2009. Vol. 633. N 1. P. 1 – 18. DOI: 10.1016/j.aca.2008.11.009

18. von Bohlen A., Fernández-Ruiz R. Experimental evidence of matrix effects in total-reflection X-ray fluorescence analysis: Coke case / Talanta. 2020. Vol. 209. 120562. DOI: 10.1016/j.talanta.2019.120562

19. Meiszterics A., Havancsák K., Sinkó K. Catalysis, nanostructure and macroscopic property triangle in bioactive calcium-containing ceramic systems / Mater. Sci. Eng. C. 2013. Vol. 33. N 3. P. 1371 – 1379. DOI: 10.1016/j.msec.2012.12.038

20. Filatova D. G., Alov N. V., Vorobyeva N. A., et al. Quantification of modifiers in advanced materials based on zinc oxide by total reflection X-ray fluorescence and inductively coupled plasma mass spectrometry / Spectrochim. Acta. Part B. 2016. Vol. 118. P. 62 – 65. DOI: 10.1016/j.sab.2016.02.008

21. Nikitina Yu. O., Petrakova N. V., Demina A. Yu., et al. Cerium-containing hydroxyapatites with luminescent properties / Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. P. 1067 – 1072. DOI: 10.1134/S0036022621080179

22. Maltsev A. S., Ivanov A. V., Chubarov V. M., et al. Development and validation of a method for multielement analysis of apatite by total-reflection X-ray fluorescence spectrometry / Talanta. 2020. Vol. 214. 120870. DOI: 10.1016/j.talanta.2020.120870

23. Maltsev A. S., Ivanov A. V., Pashkova G. V., et al. New prospects to the multi-elemental analysis of single microcrystal of apatite by total-reflection X-ray fluorescence spectrometry / Spectrochim. Acta. Part B. 2021. Vol. 184. 106281. DOI: 10.1016/j.sab.2021.106281


Review

For citations:


Samoilova A.A., Petrakova N.V., Andreeva N.A., Penkina T.N., Dorofeev S.G., Filatova D.G. Quantification of calcium, phosphorus, and cerium in novel biocompatible materials by total reflection X-ray fluorescence spectroscopy. Industrial laboratory. Diagnostics of materials. 2023;89(5):14-18. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-5-14-18

Views: 410


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)