Study of temperature and frequency dependences of quartz glass in the microwave range
https://doi.org/10.26896/1028-6861-2023-89-5-41-45
Abstract
The use of glass in microwave devices requires study of the dielectric properties of the material. We present the results of studying temperature and frequency dependences of the dielectric properties of quartz glass in the microwave region. The frequency dependence of the dielectric permittivity and dielectric loss tangent were determined using high-precision devices based on resonant cavity at a fixed frequency within a range of 8 – 26 GHz under a normal temperature. The temperature dependence was obtained using resonant cavity made of platinum coated quartz glass with a low thermal-expansion coefficient and insignificant change of intrinsic parameters under heating up to 1200°C. Experimental temperature and frequency dependences of the dielectric permittivity and dielectric loss tangent were obtained using classical conduction mechanisms taking into account the structural peculiarities of quartz glass. The effect of ionic conductivity was also evaluated in quartz glass in the microwave region. The revealed changes in the temperature dependence of the permittivity do not exceed the measurement error. The results obtained can be used for practical application of quartz glass in radio-engineering devices.
About the Author
V. P. KrylovRussian Federation
Vitalii P. Krylov
15, Kievskoe sh., Obninsk, Kaluga obl., 249031
References
1. Starchev Yu. K. Glasses for microwave devices / Élektronika i mikroélektronika. 2016. Vol. 1. P. 46 – 50 [in Russian].
2. Larchuk D. A., Startsev Yu. K. Dielectric materials for microwave devices / Élektronika i mikroélektronika. 2018. Vol. 1. P. 557 – 562 [in Russian].
3. Li E., Nie Z., Guo G., Zhang Q. Broadband Measurements of Dielectric Properties of Low-loss Materials at High Temperatures Using Circular Cavity Method / Progress in Electromagnetics Research, PIER 92. 2009. P. 103 – 120.
4. Varadan V., Hollinger R., Ghodgaonkar D., Vagadan V. Free-Space Broadband Measurements of High-temperature, Complex Dielectric Properties at microwave Frequencies / IEEE Trans. Instr. Measurement. 1991. Vol. 40. N 5. P. 234 – 245.
5. Litovchenko A. V., Ignatenko G. K. Some aspects concerning metrological provisions for material dielectric properties measurement at ultrahigh frequency within 20 – 1200 °C temperature range / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 8. P. 66 – 69 [in Russian].
6. Anisimova T. I., Demianov V. V., Ushatkin E. F., et al. Frequency absorpyion spectrum of some ceramic materials in microwave and submillimetric frequency band / Nauch. Osnovy Materialoved. 1981. P. 173 – 177 [in Russian].
7. Von Eva-Maria Amrhein. Das dielektrische Verhalten binarer Oxydglaser im Mikroweellengebiet zwischen — 100 und 900 °C / Glastechnische Berichte. Band. 1963. Vol. 36. N 11. P. 425 – 444.
8. Krylov V. P. Dielectric properties measurement for silicon dioxide at 10 GHz frequency under heating up to 1200°C in cylindrical waveguide cavity / Zavod. Lab. Diagn. Mater. 2007. Vol. 73. N 9. P. 47 – 49 [in Russian].
9. Pevneva N. A., Kondrashov D. A., Gursky A. L., Gusinsky A. V. Determination of S-parameters and dielectric permittivity of quartz ceramics images in millimeter-wave band / Dokl. BGUIR. 2021. Vol. 19. N 7. P. 65 – 71 [in Russian].
10. Heating physics of aircraft microwave dielectrics heating and their protection. — Novosibirsk: SGGA, 2008. — 156 p. [in Russian].
11. Mazurin O. V. Glass electric properties / Tr. LTI im. Lensoveta. 1962. Issue 6 [in Russian].
12. Polonsky Yu. A., Kochargin K. F., Milovidova T. V. Dielectric properties of quartz glass in the high frequency range in the temperarure range 20 – 1800 °C / Tr. Inst. Ogneuporov. 1973. N 3. P. 31 – 34 [in Russian].
13. Skanavi G. I. Dielectric physics. — Moscow, Leningrad: Izd. tekhn.-tekhnich. literatury, 1949. — 500 p. [in Russian].
14. Pranishnikov V. P. Silica system. — Leningrad: Izd. literatury po stroitel’stvu, 1971. — 61 p. [in Russian].
15. Pivinsky Yu. E. Quartz ceramics and refractory materials. — Moscow: Teploénergetik, 2008. — 464 p. [in Russian].
16. Zaitsev V. N. Complexing silica, synthesis, bonded layer structure and surface chemistry. — Kharkov: Folio, 1997. — 239 p. [in Russian].
17. Braun V. F. Dielectric materials. — Moscow: Inostrannaya literatura, 1961. — 304 p. [in Russian].
18. Demyantseva N. G., Kuzmin S. M., Solunin M. A., et al. On charged particles movement in variable nonhomogeneous field / Zh. Teor. Fiz. 2012. Vol. 82. N 11. P. 1 – 10 [in Russian].
19. Bolotovsky B. M., Serov A. V. On distinctive features of charged nonrelativistic particles movement in variable field / Usp. Fiz. Nauk. 1994. Vol. 164. N 5. P. 545 – 547 [in Russian].
20. Tareev B. M. Physics of dielectric materials. — Moscow: Énergoizdat, 1982. — 320 p. [in Russian].
Review
For citations:
Krylov V.P. Study of temperature and frequency dependences of quartz glass in the microwave range. Industrial laboratory. Diagnostics of materials. 2023;89(5):41-45. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-5-41-45