Determination of the error of measurements obtained by the optical micrometry
https://doi.org/10.26896/1028-6861-2023-89-6-42-50
Abstract
We present the results of measuring the volume of polyvinyl alcohol polymer granules crosslinked with epichlorohydrin in water and in aqueous solutions of KCl, MgCl2 and their mixtures, obtained by optical micrometry, and consider the main sources of errors in the measurement errors. The purpose of this study is to analyze and evaluate the effect of the main sources of errors on the accuracy of determining the relative volumes of granules, as well as to search for techniques that can minimize the resulting measurement errors. The diameters of the granules were determined using specialized software implementing machine vision algorithms from the images obtained by optical microscopy. Their volumes were calculated using the formula for the volume of the ellipsoid of revolution. The maximum accuracy of volume determination is known to be achieved when the measured granule has a sphere shape. It is shown that deviation from this shape, for example, in case of an ellipsoid, gives errors in determining the third axis of the ellipsoid, invisible in the image, which creates an error in determining the relative volume of the granule. The instrument error is determined and a statistical estimate of the error attributed to the non-sphericity of the granules is given. It is shown that a typical instrument error in determining the relative volumes of granules is 0.4%. The non-sphericity of the measured granules increases the measurement error up to 3.5%. The error for a single granule can be reduced to 2.3% by combination of methodological techniques and statistical processing of the results, whereas and for an ensemble of at least 5 granules — up to 1.5%. The reproducibility of the properties of polymer granules in cyclic measurements was studied. It is shown that the degree of swelling the granules is reproduced with an error of 1%, which allows the sensor to be used repeatedly. The results obtained can be used in experiments and data processing for analytical applications.
About the Authors
A. V. StaroverovaRussian Federation
Anastasia V. Staroverova
1, str. 3, Leninskie Gory, Moscow, 119991
M. G. Tokmachev
Russian Federation
Mikhail G. Tokmachev
1, str. 2, Leninskie Gory, Moscow, 119991
A. N. Gagarin
Russian Federation
Aleksandr N. Gagarin
1, str. 3, Leninskie Gory, Moscow, 119991
N. B. Ferapontov
Russian Federation
Nikolai B. Ferapontov
1, str. 3, Leninskie Gory, Moscow, 119991
References
1. Ogheard F., Cassette P., Boudaoud A. Development of an optical measurement method for «sampled» micro-volumes and nano-flow rates / Flow Measurement and Instrumentation. 2020. Vol. 73. P. 1 – 11. DOI: 10.1016/j.flowmeasinst.2020.101746
2. Bondarev A. V., Zhilyakova E. T., Demina N. B., Razmakhnin K. K. Investigation of the physical and chemical characteristics of the zeolites of the kholinsky deposit / Razrab. Registr. Lekarstv. Sredstv. 2021. Vol. 10. N 4. P. 65 – 71 [in Russian]. DOI: 10.33380/2305-2066-2021-10-4-65-71
3. Freeman D., Scatchard G. Volumetric Studies of Ion-Exchange Resin Particles Using Microscopy / J. Phys. Chem. 1965. Vol. 69. N 1. P. 70 – 74. DOI: 10.1021/j100885a012
4. Kuzhuget R. V., Ankusheva N. N., Kadyr-ool C. O., et al. Khaak-sair gold-sulfide-quartz ore occurrence (western Tuva): dating, pt parameters, fluid composition, and isotopes of S, O and C / Izv. Tomsk. Politekhn. Univ. Inzh. Georesursov. 2021. Vol. 332. N 12. P. 148 – 163 [in Russian]. DOI: 10.18799/24131830/2021/12/2630
5. Tikhanova O. A., Gagarin A. N., Tokmachev M. G., et al. Swelling kinetics of polyvinyl alcohol gel in solutions of organic acids and their salts / Sorbts. Khromatogr. Prots. 2021. Vol. 21. N 6. P. 860 – 867 [in Russian]. DOI: 10.18799/24131830/2021/12/2630
6. Kudukhova I. G., Rudakova L. V., Nikitina S. Yu., Rudakov O. B. Microphotographic determination of the effects of swelling of polymer granules in water-alcohol solutions / Nauchn. Vestn. Voronezh. Gos. Arkhitekt.-Stroit. Univ. 2011. Vol. 3 – 4. P. 117 – 122 [in Russian].
7. Agapov I. O., Ferapontov N. B., Tokmachev M. G., et al. Phase properties of polymer gels and influence of the composition of the external solution / Vestn. Mosk. Univ. Ser. 2. Khimiya. 2019. Vol. 74. N 5. P. 209 – 215 [in Russian].
8. Gavlina O. T., Kargov S. I., Ivanov V. I. The concept of gel diffusion in the kinetics of swelling and shrinking of a polystyrene sulfonic acid ion exchanger in the K+ form / Sorption and Chromatographic Processes. 2021. Vol. 21. N 6. P. 794 – 804. DOI: 10.17308/sorpchrom.2021.21/3824
9. Khamdeev M. I., Erin E. A. Plasma parameters in atomic-emission spectral analysis of phosphate concentrates of the fission products / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 2. P. 17 – 22 [in Russian]. DOI: 10.26896/1028-6861-2019-85-2-17-22
10. Babayan I. I., Ivanov A. V., Ferapontov N. B., Tokmachev M. G. Using crosslinked polyvinyl alcohol granules for the determination of the composition of mixed electrolyte solutions / Zh. Anal. Khimii. 2019. Vol. 74. N 8. P. 834 – 838 [in Russian]. DOI: 10.17308/soipchrom.2021.21/3832
11. Yamskov I. A., Budanov M. V., Davankov V. A. Hydrophilic carriers based on polyvinyl alcohol for enzyme immobilization / Bioorg. Khimiya. 1979. Vol. 5. N 11. P. 1728 – 1734 [in Russian].
12. Dutilleul P., Clifford P., Richardson S., Hemon D. Modifying the t-Test for Assessing the Correlation Between Two Spatial Processes / International Biometric Society. 1993. Vol. 49. N 1. P. 305 – 314. DOI: 10.2307/2532625
13. Gafarova L. M., Zavyalova I. G., Mustafin N. N. On Pearson’s chi-square test application features / Ékon. Sots.-Gum. Issl. 2015. N 4(8). P. 63 – 67 [in Russian].
14. Agapov D. A., Agapov A. V., Balashov N. A. Checking group measurements of gaskets for the loss of normality of distribution according to Pearson’s chi-squared test / Mordov. Gos. Univ. im. N. P. Ogareva. 2021. N 46. P. 678 – 683 [in Russian].
15. Oberenko A. V., Kachin S. V., Sagalakov S. A. Comparative study of plastic smoking mixtures containing synthetic cannabinoids using gas chromatography / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 8. P. 5 – 11 [in Russian]. DOI: 10.26896/1028-6861-2020-86-8-5-11
16. Boldin M. V. Local power of Kolmogorov’s and Omega-squared type criteria in autoregression / Vestn. Mosk. Univ. Ser. 1. Matem. Mekh. 2019. Vol. 74. N 6. P. 249 – 252 [in Russian].
17. Orlov A. I. Nonparametric goodness-of-fit Kolmogorov, Smirnov, omega-square tests and the errors in their application / Politem. Set. Élektron. Nauch. Zh. Kuban. Gos. Agrar. Univ. 2014. N 97. P. 1 – 29 [in Russian].
18. Saja A. K., Awham M. H., Rashed T. R. Synthesis and study of magnesium complexes derived from polyacrylate and polyvinyl alcohol and their applications as superabsorbent polymers / Journal of the Mechanical Behavior of Materials. 2022. Vol. 31. P. 462 – 472. DOI: 10.1515/jmbm-2022-0053
19. Ivanov A. V., Smirnova M. A., Tikhanova O. A., et al. Granular material «polyvinyl alcohol — magnetite» for use in optical micrometry / Khim. Tekhnol. 2020. Vol. 21. N 7. P. 301 – 308 [in Russian]. DOI: 10.31044/1684-5811-2020-21-7-301-308
Review
For citations:
Staroverova A.V., Tokmachev M.G., Gagarin A.N., Ferapontov N.B. Determination of the error of measurements obtained by the optical micrometry. Industrial laboratory. Diagnostics of materials. 2023;89(6):42-50. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-6-42-50