Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the impact of fatigue loading on the durability of aircraft slat membrane eyelets

https://doi.org/10.26896/1028-6861-2023-89-6-76-82

Abstract

A high-strength aluminum alloy 1933 being distinguished by good physicomechanical properties and high manufacturability is widely used in the most critical power aircraft structures, e.g., in a modern AN-148 SSJ aircraft. The alloy is used in production of various parts of articulated joints, thus making study of the durability of the alloy in a complex stress state a relevant goal. We present the results of static and dynamic tests of structurally similar samples (of two types) manufactured according to serial technology and corresponding to the shape of real eyelets of the airframe slats. Preliminary fatigue tests of standard samples (a strip with a hole) were performed to obtain the refined characteristics of the alloy in the T3 state. To analyze the mechanical behavior of the alloy with a different amplitude-frequency character of loading, the asymmetry of the loading cycle (R = 0.1; 0.2; 0.5; 0.6; 0.76; 0.82) and exposure frequencies (10, 60, and 100 Hz) were varied. In is shown that an increase in the average stress of the loading cycle reduced the number of cycles before the destruction of the eyelets: a 2-fold increase in the average stress resulted in a drop in fatigue life by two orders of magnitude (for an amplitude of 5 kg/mm2).

About the Authors

D. V. Grinevich
National Research Center «Kurchatov Institute» — VIAM
Russian Federation

Dmitry V. Grinevich

17, ul. Radio, Moscow, 105005



I. V. Gulina
National Research Center «Kurchatov Institute» — VIAM
Russian Federation

Irina V. Gulina

17, ul. Radio, Moscow, 105005



N. O. Yakovlev
National Research Center «Kurchatov Institute» — VIAM
Russian Federation

Nikolay O. Yakovlev

17, ul. Radio, Moscow, 105005



D.-S. V. Dzandarov
National Research Center «Kurchatov Institute» — VIAM
Russian Federation

David-Soslan V. Dzandarov

17, ul. Radio, Moscow, 105005



A. A. Glagovskii
Regional Aircraft-Branch of the Irkut Corporation
Russian Federation

Andrey A. Glagovskii

26-5, Leninskaya Sloboda, Moscow, 115280



Yu. V. Ermakova
Regional Aircraft-Branch of the Irkut Corporation
Russian Federation

Yulia V. Ermakova

26-5, Leninskaya Sloboda, Moscow, 115280



References

1. Smirnov N. N., Vladimirov N. I., Chernenko Zh. S., et al. Technical maintenance of aircraft: textbook for universities / N. N. Smirnov, Ed. — Moscow: Transport, 1990. — 423 p. [in Russian].

2. Batyshev K. A., Batyshev A. I. Properties of aluminum alloys / Lit. Proizv. 2020. N 1. P. 21 – 26.

3. Dursun T., Soutis C. Recent developments in advanced aircraft aluminium alloys / Mater. Design. 2014. N 56. P. 862 – 871. DOI: 10.1016/j.matdes.2013.12.002

4. Schijve J. Fatigue of aircraft materials and structures / Int. J. Fatigue. 1994. Vol. 16. N 1. P. 21 – 32.

5. Antipov V. V., Senatorova O. G., Tkachenko E. A., Vakhromov P. O. Aluminium wrought alloys / Aviats. Mater. Tekhnol. 2012. N S. P. 167 – 182 [in Russian].

6. Antipov V. V. Strategics of Developing Titanium, Magnesium, Beryllium and Aluminium Alloys / Aviats. Mater. Tekhnol. 2012. N S. P. 157 – 167 [in Russian].

7. Vakhromov R. O., Tkachenko E. A., Popova1 O. I., Milevskaya T. V. Summarizing of the experience of usage and optimization of manufacturing technology semi-finished products of high strength aluminum alloy 1933 for the primary structures of modern aircrafts / Aviats. Mater. Tekhnol. 2014. N 2 (31). P. 34 – 39 [in Russian]. DOI: 10.18577/2071-9140-2014-0-2-34-39

8. Duyunova V. A., Leonov A. A., Molodtsov S. V. VIAM’s contribution to the development of light alloys and the corrosion control of rocket and space technology products / Tr. VIAM: Élektron. Nauch.-Tekhn. Zh. 2020. N 2. Art. 3. [in Russian]. DOI: 10.18577/2307-6046-2020-0-2-22-30

9. Grigoriev V. V. Research on the technology of modifying aluminum alloys / Proceedings of the 76th student scientific conference. Bryansk, March 25, 2021. — Bryansk: Bryansk Gos. Tekn. Univ., 2021. P. 283 – 286 [in Russian].

10. Chemin A., Spinelli D., Filho W., et al. Corrosion Fatigue Crack Growth of 7475 T7351 Aluminum Alloy under Flight Simulation Loading / Proc. Eng. 2015. N 101. P. 85 – 92. DOI: 10.1016/j.proeng.2015.02.012

11. Nunomura Sh. Fatigue in aluminum and aluminum alloy / J. Jap. Inst. Light Met. 1978. N 28. P. 566 – 574. DOI: 10.2464/jilm.28.566

12. Eskin D. G., Toropova L. S. Tensile and elastic properties of deformed heterogeneous aluminium alloys at room and elevated temperatures / Mater. Sci. Eng. A. 1994. N 183(1). P. L1 – L4.

13. Sanchez M., Mallor C., Canales M., et al. Digital Image Correlation parameters optimized for the characterization of fatigue crack growth life / Measurement. 2001. N 174. 109082. DOI: 10.1016/j.measurement.2021.109082

14. Yankin A., Wildemann V., Belonogov N., Staroverov O. Influence of static mean stresses on the fatigue behavior of 2024 aluminum alloy under multiaxial loading / Frattura ed Integrità Strutturale. 2019. N 14(51). P. 151 – 163. DOI: 10.3221/igf-esis.51.12

15. Fridlyander I. N. Creation, research and application of aluminum alloys. Selected works. — Moscow: Nauka, 2013. — 291 p. [in Russian].

16. Fridlyander I. N. Aluminum deformable structural alloys. — Moscow: Metallurgiya, 1979. — 209 p. [in Russian].

17. Zhelonkina S. I. Review of modern methods of surface preparation of aluminum alloys for the application of metal coatings (part 1) / Uproch. Tekhnol. Pokryt. 2021. Vol. 17. N 5. P. 227 – 231 [in Russian].

18. Grigoriev V. V. Research on the technology of modifying aluminum alloys / Proceedings of the 76th student scientific conference, Bryansk, March 25, 2021. — Bryansk: Bryansk Gos. Tekn. Univ., 2021. P. 283 – 286 [in Russian].

19. Kishkina S. I. Resistance to failure of aluminum alloys. — Moscow: Metallurgiya, 1981. — 279 p. [in Russian].

20. Mugatarov A. I., Vildeman V. E., Yankin A. S. Fatigue fracture of aluminum alloy specimens under biaxial cyclic impact / Aérokosm. Tekhn. Vys. Tekhnol. Innov. 2021. Vol. 2. P. 126 – 128 [in Russian].

21. Oreshko E. I., Erasov V. S., Grinevich D. V., Shershak P. V. Review of criteria of durability of materials / Tr. VIAM: Élektron. Nauch.-Tekhn. Zh. 2019. N 9. Art. 12. [in Russian]. DOI: 10.18577/2307-6046-2019-0-9-108-126

22. Sulimina Ya. V., Yakovlev N. O., Erasov V. S., et al. The modern methods of pin-type bearing test of metallic materials / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 7. P. 41 – 49 [in Russian]. DOI: 10.26896/1028-6861-2019-85-7-41-49

23. Nesterenko G. I., Kulemin A. V., Kim A. S., et al. Comparison of the characteristics of modern aluminum alloys / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 7. P. 50 – 55 [in Russian]. DOI: 10.26896/1028-6861-2019-85-7-50-55


Review

For citations:


Grinevich D.V., Gulina I.V., Yakovlev N.O., Dzandarov D.V., Glagovskii A.A., Ermakova Yu.V. Study of the impact of fatigue loading on the durability of aircraft slat membrane eyelets. Industrial laboratory. Diagnostics of materials. 2023;89(6):76-82. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-6-76-82

Views: 313


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)