Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Variable microfluidic dosing valve for gas chromatography

https://doi.org/10.26896/1028-6861-2023-89-7-8-13

Abstract

Miniaturization coupled with the introduction of microfluidic systems and devices into the chromatograph hardware is one of the main approaches to the creation of modern gas chromatographic equipment. For variable sample dosing in automatic mode, a microfluidic dosing valve based on microelectromechanical systems was developed. The manufactured device provides multi-point calibration with a single calibration gas mixture. Two methods for constructing a calibration dependence were implemented using the developed dosing device: a calibrated loop for 250 μl taken as a constant dosing loop and calibration solutions (gas mixtures of propane in helium (GSO 10463–2014) with concentrations of 0.0025, 0.025, 0.25, 0.5б and 1.25 % vol.) were used in the first method, whereas in the second one a variable dosing provided by the developed microfluidic dosing valve which consisted in the possibility of introducing a different amount of the calibration gas mixture of propane in helium (2.5 % vol.) into the chromatographic column due to changing the time of sample injection at a constant pressure was implemented. The experiment was carried out on a PIA gas microchromatograph with a MEMS column (a sectional plane of 1 × 1 mm and a 1-m channel) with a Carbopak B adsorbent. It is shown that the use of the developed dosing device as part of the PIA gas microchromatograph makes it possible to carry out a metrologically assured quantitative analysis.

About the Authors

I. A. Platonov
S. P. Korolev Samara National Research University
Russian Federation

Igor A. Platonov

34, Moskovskoye shosse, Samara, 443086



V. I. Platonov
S. P. Korolev Samara National Research University
Russian Federation

Vladimir I. Platonov

34, Moskovskoye shosse, Samara, 443086



A. I. Balashova
S. P. Korolev Samara National Research University
Russian Federation

Anastasia I. Balashova

34, Moskovskoye shosse, Samara, 443086



I. N. Kolesnichenko
S. P. Korolev Samara National Research University
Russian Federation

Irina N. Kolesnichenko

34, Moskovskoye shosse, Samara, 443086



I. M. Mukhanova
S. P. Korolev Samara National Research University
Russian Federation

Irina M. Mukhanova

34, Moskovskoye shosse, Samara, 443086



N. A. Aphonin
S. P. Korolev Samara National Research University
Russian Federation

Nikita A. Aphonin

34, Moskovskoye shosse, Samara, 443086



References

1. Pemble C. M., Towe B. C. A miniature shape memory alloy pinch valve / Sens. Actuators, A. 1999. Vol. 77. N 2. P. 145 – 148. DOI: 10.1016/S0924-4247(99)00157-0

2. Weibel D. B., Siegel A. C., Lee A., et al. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane) / Lab Chip. 2007. Vol. 7. P. 1832 – 1836. DOI: 10.1039/b714664g

3. Weibel D. B., Kruithof M., Potenta S., et al. Torque-actuated valves for microfluidics / Anal. Chem. 2005. Vol. 77. N 15. P. 4726 – 4733. DOI: 10.1021/ac048303p

4. Pilarski P. M., Adamia S., Backhouse C. J. An adaptable microvalving system for on-chip polymerase chain reactions / J. Immunol. Methods. 2005. Vol. 305. N 1. P. 48 – 58. DOI: 10.1016/j.jim.2005.07.009

5. Sundararajan N., Kim D., Berlin A. A. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography / Lab Chip. 2005. Vol. 5. P. 350 – 354. DOI: 10.1039/B500792P

6. Studer V., Hang G., Pandolfi A., et al. Scaling properties of a low-actuation pressure microfluidic valve / J. Appl. Phys. 2004. Vol. 95. P. 393 – 398. DOI: 10.1063/1.1629781

7. Hosokawa K., Maeda R. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique / J. Micromech. Microeng. 2000. Vol. 10. N 3. P. 415 – 420. DOI: 10.1088/0960-1317/10/3/317

8. Grover W. H., Skelley A. M., Liu C. N., et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices / Sens. Actuators, B. 2003. Vol. 89. N 3. P. 315 – 323. DOI: 10.1016/S0925-4005(02)00468-9

9. Unger M. A., Chou H. P., Thorsen T., et al. Monolithic microfabricated valves and pumps by multilayer soft lithography / Science. — 2000. Vol. 288. N 5463. P. 113 – 116. DOI: 10.1126/science.288.5463.113

10. Yang B. Z., Lin Q. A. Latchable microvalve using phase change of paraffin wax / Sens. Actuators, A. 2007. Vol. 134. N 1. P. 194 – 200. DOI: 10.1016/j.sna.2006.07.017

11. Yoo J. C., Choi Y. J., Kang C. J., Kim Y. S. A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and paraffin-actuated microvalve / Sens. Actuators, A. 2007. Vol. 139. P. 216 – 220. DOI: 10.1016/j.sna.2007.04.056

12. Irimia D., Toner M. Cell handling using microstructured membranes / Lab. Chip. 2006. Vol. 6. P. 345 – 352. DOI: 10.1039/B515983K

13. Van der Wijngaart W., Chugh D., Man E., et al. A low-temperature thermopneumatic actuation principle for gas bubble microvalves / J. Microelectromech. Syst. 2007. Vol. 16. N 3. P. 765 – 774. DOI: 10.1109/jmems.2007.893514

14. Lee D. E., Soper S., Wang W. J. Design and fabrication of an electrochemically actuated microvalve / Microsyst. Technol. 2008. Vol. 14. P. 1751 – 1756. DOI: 10.1007/s00542-008-0594-3

15. Kaigala G. V., Hoang V. N., Backhouse C. J. Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis / Lab. Chip. 2008. Vol. 8. P. 1071 – 1078. DOI: 10.1039/B802853B

16. Jacobson S. C., Ermakov S. V., Ramsey J. M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices / Anal. Chem. 1999. Vol. 71. P. 3273 – 3276. DOI: 10.1021/ac990059s

17. Schasfoort R. B. M., Schlautmann S., Hendrikse J., van den Berg A. Field-effect flow control for microfabricated fluidic networks / Science. 1999. Vol. 286. N 5441. P. 942 – 945. DOI: 10.1126/science.286.5441.942

18. Gui L., Liu J. Ice valve for a mini/micro flow channel / J. Micromech. Microeng. 2004. Vol. 14. P. 242 – 246. DOI: 10.1088/0960-1317/14/2/011

19. Baroud C. N., Delville J. P., Gallaire F., Wunenburger R. Thermocapillary valve for droplet production and sorting / Phys. Rev. 2007. Vol. 75.046302. DOI: 10.1103/physreve.75.046302

20. Yu Q., Bauer J. M., Moore J. S., Beebe D. J. Responsive biomimetic hydrogel valve for microfluidics / Appl. Phys. 2001. Vol. 78. P. 2589 – 2591. DOI: 10.1063/1.1367010

21. Liu C. W., Park J. Y., Xu Y. G., Lee S. Arrayed ph-responsive microvalves controlled by multiphase laminar flow / J. Micromech. Microeng. 2007. Vol. 17. P. 1985 – 1991. DOI: 10.1088/0960-1317/17/10/009

22. Liu R. H., Bonanno J., Yang J. N., et al. Single-use, thermally actuated paraffin valves for microfluidic applications / Sens. Actuators. B. 2004. Vol. 98. P. 328 – 336. DOI: 10.1016/j.snb.2003.09.037

23. Cho H., Kim H. Y., Kang J. Y., Kim T. S. How the capillary burst microvalve works / J. Colloid Interface Sci. 2007. Vol. 306. P. 379 – 385. DOI: 10.1016/j.jcis.2006.10.077

24. Chen J. M., Huang P. C., Lin M. G. Analysis and experiment of capillary valves for microfluidics on a rotating disk / Microfluid. Nanofluid. 2008. Vol. 4. P. 427 – 437. DOI: 10.1007/s10404-007-0196-x

25. Yashin Ya. I., Yashin E. Ya., Yashin A. Ya. Gas chromatography. — Moscow: Translit, 2009. — 528 p. [in Russian].


Review

For citations:


Platonov I.A., Platonov V.I., Balashova A.I., Kolesnichenko I.N., Mukhanova I.M., Aphonin N.A. Variable microfluidic dosing valve for gas chromatography. Industrial laboratory. Diagnostics of materials. 2023;89(7):8-13. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-8-13

Views: 380


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)