

Variable microfluidic dosing valve for gas chromatography
https://doi.org/10.26896/1028-6861-2023-89-7-8-13
Abstract
Miniaturization coupled with the introduction of microfluidic systems and devices into the chromatograph hardware is one of the main approaches to the creation of modern gas chromatographic equipment. For variable sample dosing in automatic mode, a microfluidic dosing valve based on microelectromechanical systems was developed. The manufactured device provides multi-point calibration with a single calibration gas mixture. Two methods for constructing a calibration dependence were implemented using the developed dosing device: a calibrated loop for 250 μl taken as a constant dosing loop and calibration solutions (gas mixtures of propane in helium (GSO 10463–2014) with concentrations of 0.0025, 0.025, 0.25, 0.5б and 1.25 % vol.) were used in the first method, whereas in the second one a variable dosing provided by the developed microfluidic dosing valve which consisted in the possibility of introducing a different amount of the calibration gas mixture of propane in helium (2.5 % vol.) into the chromatographic column due to changing the time of sample injection at a constant pressure was implemented. The experiment was carried out on a PIA gas microchromatograph with a MEMS column (a sectional plane of 1 × 1 mm and a 1-m channel) with a Carbopak B adsorbent. It is shown that the use of the developed dosing device as part of the PIA gas microchromatograph makes it possible to carry out a metrologically assured quantitative analysis.
About the Authors
I. A. PlatonovRussian Federation
Igor A. Platonov
34, Moskovskoye shosse, Samara, 443086
V. I. Platonov
Russian Federation
Vladimir I. Platonov
34, Moskovskoye shosse, Samara, 443086
A. I. Balashova
Russian Federation
Anastasia I. Balashova
34, Moskovskoye shosse, Samara, 443086
I. N. Kolesnichenko
Russian Federation
Irina N. Kolesnichenko
34, Moskovskoye shosse, Samara, 443086
I. M. Mukhanova
Russian Federation
Irina M. Mukhanova
34, Moskovskoye shosse, Samara, 443086
N. A. Aphonin
Russian Federation
Nikita A. Aphonin
34, Moskovskoye shosse, Samara, 443086
References
1. Pemble C. M., Towe B. C. A miniature shape memory alloy pinch valve / Sens. Actuators, A. 1999. Vol. 77. N 2. P. 145 – 148. DOI: 10.1016/S0924-4247(99)00157-0
2. Weibel D. B., Siegel A. C., Lee A., et al. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane) / Lab Chip. 2007. Vol. 7. P. 1832 – 1836. DOI: 10.1039/b714664g
3. Weibel D. B., Kruithof M., Potenta S., et al. Torque-actuated valves for microfluidics / Anal. Chem. 2005. Vol. 77. N 15. P. 4726 – 4733. DOI: 10.1021/ac048303p
4. Pilarski P. M., Adamia S., Backhouse C. J. An adaptable microvalving system for on-chip polymerase chain reactions / J. Immunol. Methods. 2005. Vol. 305. N 1. P. 48 – 58. DOI: 10.1016/j.jim.2005.07.009
5. Sundararajan N., Kim D., Berlin A. A. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography / Lab Chip. 2005. Vol. 5. P. 350 – 354. DOI: 10.1039/B500792P
6. Studer V., Hang G., Pandolfi A., et al. Scaling properties of a low-actuation pressure microfluidic valve / J. Appl. Phys. 2004. Vol. 95. P. 393 – 398. DOI: 10.1063/1.1629781
7. Hosokawa K., Maeda R. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique / J. Micromech. Microeng. 2000. Vol. 10. N 3. P. 415 – 420. DOI: 10.1088/0960-1317/10/3/317
8. Grover W. H., Skelley A. M., Liu C. N., et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices / Sens. Actuators, B. 2003. Vol. 89. N 3. P. 315 – 323. DOI: 10.1016/S0925-4005(02)00468-9
9. Unger M. A., Chou H. P., Thorsen T., et al. Monolithic microfabricated valves and pumps by multilayer soft lithography / Science. — 2000. Vol. 288. N 5463. P. 113 – 116. DOI: 10.1126/science.288.5463.113
10. Yang B. Z., Lin Q. A. Latchable microvalve using phase change of paraffin wax / Sens. Actuators, A. 2007. Vol. 134. N 1. P. 194 – 200. DOI: 10.1016/j.sna.2006.07.017
11. Yoo J. C., Choi Y. J., Kang C. J., Kim Y. S. A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and paraffin-actuated microvalve / Sens. Actuators, A. 2007. Vol. 139. P. 216 – 220. DOI: 10.1016/j.sna.2007.04.056
12. Irimia D., Toner M. Cell handling using microstructured membranes / Lab. Chip. 2006. Vol. 6. P. 345 – 352. DOI: 10.1039/B515983K
13. Van der Wijngaart W., Chugh D., Man E., et al. A low-temperature thermopneumatic actuation principle for gas bubble microvalves / J. Microelectromech. Syst. 2007. Vol. 16. N 3. P. 765 – 774. DOI: 10.1109/jmems.2007.893514
14. Lee D. E., Soper S., Wang W. J. Design and fabrication of an electrochemically actuated microvalve / Microsyst. Technol. 2008. Vol. 14. P. 1751 – 1756. DOI: 10.1007/s00542-008-0594-3
15. Kaigala G. V., Hoang V. N., Backhouse C. J. Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis / Lab. Chip. 2008. Vol. 8. P. 1071 – 1078. DOI: 10.1039/B802853B
16. Jacobson S. C., Ermakov S. V., Ramsey J. M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices / Anal. Chem. 1999. Vol. 71. P. 3273 – 3276. DOI: 10.1021/ac990059s
17. Schasfoort R. B. M., Schlautmann S., Hendrikse J., van den Berg A. Field-effect flow control for microfabricated fluidic networks / Science. 1999. Vol. 286. N 5441. P. 942 – 945. DOI: 10.1126/science.286.5441.942
18. Gui L., Liu J. Ice valve for a mini/micro flow channel / J. Micromech. Microeng. 2004. Vol. 14. P. 242 – 246. DOI: 10.1088/0960-1317/14/2/011
19. Baroud C. N., Delville J. P., Gallaire F., Wunenburger R. Thermocapillary valve for droplet production and sorting / Phys. Rev. 2007. Vol. 75.046302. DOI: 10.1103/physreve.75.046302
20. Yu Q., Bauer J. M., Moore J. S., Beebe D. J. Responsive biomimetic hydrogel valve for microfluidics / Appl. Phys. 2001. Vol. 78. P. 2589 – 2591. DOI: 10.1063/1.1367010
21. Liu C. W., Park J. Y., Xu Y. G., Lee S. Arrayed ph-responsive microvalves controlled by multiphase laminar flow / J. Micromech. Microeng. 2007. Vol. 17. P. 1985 – 1991. DOI: 10.1088/0960-1317/17/10/009
22. Liu R. H., Bonanno J., Yang J. N., et al. Single-use, thermally actuated paraffin valves for microfluidic applications / Sens. Actuators. B. 2004. Vol. 98. P. 328 – 336. DOI: 10.1016/j.snb.2003.09.037
23. Cho H., Kim H. Y., Kang J. Y., Kim T. S. How the capillary burst microvalve works / J. Colloid Interface Sci. 2007. Vol. 306. P. 379 – 385. DOI: 10.1016/j.jcis.2006.10.077
24. Chen J. M., Huang P. C., Lin M. G. Analysis and experiment of capillary valves for microfluidics on a rotating disk / Microfluid. Nanofluid. 2008. Vol. 4. P. 427 – 437. DOI: 10.1007/s10404-007-0196-x
25. Yashin Ya. I., Yashin E. Ya., Yashin A. Ya. Gas chromatography. — Moscow: Translit, 2009. — 528 p. [in Russian].
Review
For citations:
Platonov I.A., Platonov V.I., Balashova A.I., Kolesnichenko I.N., Mukhanova I.M., Aphonin N.A. Variable microfluidic dosing valve for gas chromatography. Industrial laboratory. Diagnostics of materials. 2023;89(7):8-13. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-8-13