

A new approach to determining the blending octane number of gaseous components of motor gasolines
https://doi.org/10.26896/1028-6861-2023-89-7-14-20
Abstract
The octane number for gaseous components (GC) is currently determined using the calculation method proceeding from the hydrocarbon composition. The method provides determination of the research octane number (RON) only. A discrepancy between the actual and predicted values of the octane number thus determined leads to an overestimated introduction of these components into the fuel which results in the reduced fuel performance and economic indicators of the production. In this regard, the development of a new approach to the determination of the blending octane number of low-boiling components is extremely important for designing optimal formulations of motor fuels. A method for determining the blending octane numbers (both RON and MON) of motor gasoline gaseous components has been improved due to preliminary sample preparation by bubbling which provided taking into account the proportion of involving fractions of C4 hydrocarbon and pentane-amylene along with the chemical nature of the base fuel components. It is shown that the value of the blending octane number for gaseous components depends on the hydrocarbon composition of the base component. Application of the developed method to determining the blending octane number of gaseous components of motor fuels allowed us to obtain optimal formulations of gasoline with the involvement of low-boiling by-products and increased the accuracy of forecasting the composition of fuels thus improving the economic performance of the production.
About the Authors
E. B. KovalevaRussian Federation
Ekaterina B. Kovaleva
83, ul. Lermontova, Irkutsk, 664074
S. G. Dyachkova
Russian Federation
Svetlana G. Dyachkova
83, ul. Lermontova, Irkutsk, 664074
A. A. Ganina
Russian Federation
Anna A. Ganina
POB 65, Angarsk, Irkutsk oblast’, 665830
I. E. Kuzora
Russian Federation
Igor E. Kuzora
POB 65, Angarsk, Irkutsk oblast’, 665830
V. A. Sergeev
Russian Federation
Vladimir A. Sergeev
POB 65, Angarsk, Irkutsk oblast’, 665830
References
1. Abdellatief T. M. M., Ershov M. A., Kapustin V. M. New Recipes for Producing a High-Octane Gasoline Based on Naphtha from Natural Gas Condensate / Fuel. 2020. Vol. 276. 118075. DOI: 10.1016/j.fuel.2020.118075
2. Kapustin V. M. Technology for the production of automobile gasolines. — Moscow: Khimiya, 2015. — 256 p. [in Russian].
3. Ganina A. A., Kuzora I. E., D’yachkova S. G., et al. Use of side-streams of commercial production of petroleum products / Izv. Vuzov. Prikl. Khim. Biotekhnol. 2019. Vol. 9. N 3. P. 536 – 546 [in Russian]. DOI: 10.21285/2227-2925-2019-9-3-536-546
4. Ganina A. A., D’yachkova S. G., Derkach D. S. Development of a method for preparing a by product of butyl alcohol production for use as a component of motor fuels / Proc. of the XIII all-Russian scientific and practical conference with international participation «Prospects for the development of technology for processing hydrocarbon and mineral resources», Irkutsk. April 26 – 27, 2018. P. 147 [in Russian].
5. GOST R ISO 3951-5-2009. Statistical methods. Procedures for selective control on a quantitative basis. Part 5. — Moscow: Standartinform, 2010. — 43 p. [in Russian].
6. Denisov K. Yu. The problem of quality margin and prediction of octane number in the compounding of commercial gasoline / Neftegazopererabotka. Materials of the international scientific-practical conference. 2016. P. 44 – 45 [in Russian].
7. Gureev A. A., Azev V. S. Automobile gasolines. Properties and application: Textbook for universities. — Moscow: Neft’ i Gaz, 1996. — 444 p. [in Russian].
8. Tsodikov Yu. M. Efficiency of applying the method of sequential linear programming to solve problems of production planning at an oil refinery / Probl. Upravl. 2018. N 6. P. 55 – 66 [in Russian].
9. Babkin K. D., Makarov A. D. Development of a mathematical model for determining the anti-knock properties of gasolines with oxygen-containing octane-boosting additives / Mir Nefteprod. Vestn. Neft. Komp. 2019. N 5. P. 9 – 15 [in Russian].
10. Petukhov M. Yu., Boronin A. B., Khokhlov A. S. Approaches to LP-modeling of refinery production for planning purposes / Avtomatiz. Prom. 2016. N 2. P. 22 – 28 [in Russian].
11. Ershov M. A., Potanin D. A., Tarazanov S. V., et al. Blending Characteristics of Isooctene, MTBE and TAME as Gasoline Components / Energy Fuels. 2020. Vol. 34. N 3. P. 2816 – 2823. DOI: 10.1021/acs.energyfuels.9b03914
12. Ivanchina E. D., Ivashkina E. N., Khrapov D. V., et al. Enhanced production of various grades of gasoline based on studies of intermolecular interactions of blend components and the composition of the processed feedstock / Khim. Tekhnol. Topliv Masel. 2017. Vol. 53. N 2. P. 181 – 196 [in Russian]. DOI: 10.1007/s10553-017-0794-6
13. Nikolaychuk E., Sratiev V., Shishkova I., et al. Investigation of the correspondence between the measured and predicted by the RPMS program octane numbers of gasoline mixtures corresponding to the EURO V standard / Neftepererab. Neftekhim Nauch. Tekhn. Dostizh. Pered. Opyt. 2017. N 1. P. 3 – 6 [in Russian].
14. Wen Yu. America Morales Gasoline Blending System Modeling via Static and Dynamic Neural Networks / Int. J. Modell. Simul. 2004. Vol. 24. N 3. P. 151 – 160. DOI: 10.2316/Journal.205.2004.3.205 – 4142
15. Gorbunov S. S., Aleksanyan A. A., Kostandyan V. A., Egorov A. F. Accounting for the nonlinearity of fuel mixing recipes in the software package for optimal planning and optimization of fuel mixing recipes / Neftepererab. Neftekhim. Nauch. Tekhn. Dostizh. Opyt. 2019. N 2. P. 9 – 12 [in Russian].
16. Akhmetov A. F., Gaisina A. R., Gantsev A. V., Gantsev D. V. Octane number of mixing of aromatic hydrocarbons in commercial gasolines / Neftegaz. Delo. 2011. Vol. 9. N 3. P. 95 – 97 [in Russian].
Review
For citations:
Kovaleva E.B., Dyachkova S.G., Ganina A.A., Kuzora I.E., Sergeev V.A. A new approach to determining the blending octane number of gaseous components of motor gasolines. Industrial laboratory. Diagnostics of materials. 2023;89(7):14-20. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-14-20