

Optimization of Plasma-Assisted Desorption/Ionization-Mass Spectrometry for Analysis of Ibuprofen
https://doi.org/10.26896/1028-6861-2023-89-7-21-24
Аннотация
In medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accurate analysis in the development of pharmaceutically relevant compounds. Sniffer tubes were used to route sample ions into a single quadrupole MS, with each acquisition lasting for 1 minute. Without any prior preparation, samples of ibuprofen tablets were directly exposed to PADI plasma for one minute at an atmosphere pressure. The approach is rapid, easy to use, and needs little to no sample preparation. In this study, the settings were improved by optimization of several parameters, such as plasma power, plasma-to-sample distance, and inner/outer flows of helium carrier gas, which were found to be 8 W, 2 mm, and 284 mL/min, respectively. The PADI-MS method provides a real-time information about structural features on the compounds. Ibuprofen tablets were used as a paradigm for pharmaceutically significant materials and direct PADI-MS analysis without a preliminary sample -treatment appeared to be successful: according to PADI-MS data a medication can be examined after one minute of plasma exposure.
Об авторе
J. M. S. JamurИрак
Jasim M. S. Jamur
Iraq
Список литературы
1. Aydin S., Emin Aydin M., Kiliç H., Ulvi A. Occurrence and Ecotoxicological Risk Assessment of Analgesics in Wastewater / Environ. Ecol. Res. 2018. Vol. 6. N 5. P. 413 – 422. DOI: 10.13189/eer.2018.060502
2. Dasenaki M. E., Thomaidis N. S. Multianalyte Method for the Determination of Pharmaceuticals in Wastewater Samples Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry / Anal. Bioanal. Chem. 2015. Vol. 407. N 15. P. 4229 – 4245. DOI: 10.1007/s00216-015-8654-x
3. Agunbiade F. O., Moodley B. Pharmaceuticals as Emerging Organic Contaminants in Umgeni River Water System, KwaZulu-Natal, South Africa / Environ. Monit. Assess. 2014. Vol. 186. N 11. P. 7273 – 7291. DOI: 10.1007/s10661-014-3926-z
4. Shamar J., Abbas S., Abbas Z. Analytical Methods for Determination of Ketoprofen Drug: A Review / Ibn AL-Haitham J. Pure Appl. Sci. 2022. Vol. 35. N 3. P. 76 – 82. DOI: 10.30526/35.3.2842
5. Matkovic S. R., Valle G. M., Briand L. E. Quantitative Analysis of Ibuprofen in Pharmaceutical Formulations through FTIR Spectroscopy / Lat. Am. Appl. Res. 2005. Vol. 35. N 3. P. 189 – 195.
6. Izadi P., Izadi P., Salem R., et al. Non-Steroidal Anti-Inflammatory Drugs in the Environment: Where Were We and How Far We Have Come? / Environ. Pollut. 2020. Vol. 267. 115370. DOI: 10.1016/j.envpol.2020.115370
7. Gavrilescu M., Demnerová K., Aamand J., et al. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation / New Biotechnol. 2015. Vol. 32. N 1. P. 147 – 156. DOI: 10.1016/j.nbt.2014.01.001
8. Fekadu S., Alemayehu E., Dewil R., Van der Bruggen B. Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge / Sci. Total Environ. 2019. Vol. 654. P. 324 – 337. DOI: 10.1016/j.scitotenv.2018.11.072
9. Zur J., Pinski A., Marchlewicz A., et al. Organic Micropollutants Paracetamol and Ibuprofen — Toxicity, Biodegradation, and Genetic Background of Their Utilization by Bacteria / Envivon Sci. Pollut. Res. 2018. Vol. 25. N 6. P. 21498 – 21524. DOI: 10.1007/s11356-018-2517-x
10. Rasheed T., Bilal M., Nabeel F., et al. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment / Environ. Int. 2019. Vol. 122. P. 52 – 66. DOI: 10.1016/j.envint.2018.11.038
11. Sousa J. C. G., Ribeiro A. R., Barbosa, M. O., et al. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018. Vol. 344. P. 146 – 162. DOI: 10.1016/j.jhazmat.2017.09.058
12. Petrie B., Camacho-Muñoz D. Analysis, Fate and Toxicity of Chiral Non-Steroidal Anti-Inflammatory Drugs in Wastewaters and the Environment: A Review. — Springer International Publishing, 2021. Vol. 19. DOI: 10.1007/s10311-020-01065-y
13. Jamur J. M. S. Raman Spectroscopy Analysis for Monitoring of Chemical Composition of Aspirin after Exposure to Plasma Flame / Spectosc. Eur. 2022. Vol. 34. N 5. P. 18 – 22. DOI: 10.1255/sew.2022.a15
14. Hallé C., Huck P. M., Peldszus S. Emerging Contaminant Removal by Biofiltration: Temperature, Concentration, and EBCT Impacts / J. Am. Water Works Assoc. 2015. Vol. 107. N 7. P. E364 – E379. DOI: 10.5942/jawwa.2015.107.0086
15. Sharma K., Kaushik G., Thotakura N., et al. Fate of Ibuprofen under Optimized Batch Biodegradation Experiments Using Micrococcus Yunnanensis Isolated from Pharmaceutical Sludge / Int. J. Environ. Sci. Technol. 2019. Vol. 16. N 12. P. 8315 – 8328. DOI: 10.1007/s13762-019-02400-9
16. Adityosulindro S., Barthe L., González-Labrada K., et al. Sonolysis and Sono-Fenton Oxidation for Removal of Ibuprofen in (Waste)Water / Ultrason. Sonochem. 2017. Vol. 39. P. 889 – 896. DOI: 10.1016/j.ultsonch.2017.06.008
17. Mohamed A., Salama A., Nasser W. S., Uheida A. Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO2 – NH2 Nanofiber Membrane under UV Light Irradiation / Environ. Sci. Eur. 2018. Vol. 30. 47. DOI: 10.1186/s12302-018-0177-6
18. Ciríaco L., Anjo C., Correia J., et al. Electrochemical Degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD Electrodes / Electrochim. Acta 2009. Vol. 54. N 5. P. 1464 – 1472. DOI: 10.1016/j.electacta.2008.09.022
19. Williams N. S., Ray M. B., Gomaa H. G. Removal of Ibuprofen and 4-Isobutylacetophenone by Non-Dispersive Solvent Extraction Using a Hollow Fibre Membrane Contactor / Sep. Purif. Technol. 2012. Vol. 88. P. 61 – 69. DOI: 10.1016/j.seppur.2011.11.022
20. Adewuyi A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical waste in the Water System / Water (Switzerland). 2020. Vol. 12. N 6. P. 1 – 31. DOI: 10.3390/W12061551
21. Sadecka J., Cakrt M., Hercegova A. Determination of Ibuprofen and Naproxen in Tablets / J. Pharm. Biomed. Anal. 2001. Vol. 25. N 5 – 6. P. 881 – 891. DOI: 10.1016/S0731-7085(01)00374-0
22. Baeyens W. The Determination of Non-Steroidal Antiinflammatory Drugs in Pharmaceuticals by Capillary Zone Electrophoresis and Micellar Electrokinetic Capillary Chromatography / J. Pharm. Biomed. Anal. 1994. Vol. 12. N 1. P. 21 – 26. DOI: 10.1016/0731-7085(94)80005-7
23. Cherkaoui S., Veuthey J. L. Development and Robustness Testing of a Nonaqueous Capillary Electrophoresis Method for the Analysis of Nonsteroidal Anti-Inflammatory Drugs / J. Chromatogr. A. 2000. Vol. 874. N 1. P. 121 – 129. DOI: 10.1016/S0021-9673(00)00052-2
24. Fanali S. Enantioselective Determination by Capillary Electrophoresis with Cyclodextrins as Chiral Selectors / J. Chromatogr. A. 2000. Vol. 875. N 1 – 2. P. 89 – 122. DOI: 10.1016/S0021-9673(99)01309-6
25. Veraart J. R., Gooijer C., Lingeman H., et al. At-Line Solid-Phase Extraction for Capillary Electrophoresis: Application to Negatively Charged Solutes / J. Chromatogr. B. 1998. Vol. 719. N 1 – 2. P. 199 – 208. DOI: 10.1016/S0378-4347(98)00410-1
26. Lampert B. M., Stewart J. T. Determination of Non-Steroidal Anti-Inflammatory Analgesics in Solid Dosage Forms by High-Performance Liquid Chromatography on Underivatized Silica with Aqueous Mobile Phase / J. Chromatogr. A. 1990. Vol. 504(C). P. 381 – 389. DOI: 10.1016/S0021-9673(01)89541-8
27. Ravisankar S., Vasudevan M., Gandhimathi M., Suresh B. Reversed-Phase HPLC Method for the Estimation of Acetaminophen, Ibuprofen and Chlorzoxazone in Formulations / Talanta. 1998. Vol. 46. N 6. P. 1577 – 1581. DOI: 10.1016/S0039-9140(98)00043-5
28. Abbas S. M., Jamur J. M. S., Sallal T. D. Indirect Spectrophotometric Determination of Mebendazole Using N-Bromosuccinimide as an Oxidant and Tartarazine Dye as Analytical Reagent / Egypt. J. Chem. 2021. Vol. 64. N 9. P. 4913 – 4917. DOI: 10.21608/ejchem.2021.68614.3509
29. Mohammed M. A., Abbas S. M., Jamur J. M. S. Derivative Spectrophotometric Determination for Simultaneous Estimation of Isoniazid and Ciprofloxacin in Mixture and Pharmaceutical Formulation / Methods Objects Chem. Anal. 2020. Vol. 15. N 3. P. 105 – 110. DOI: 10.17721/moca.2020.105-110
30. Abbas S. M., Jamur J. M. S., Nasif A. M. Spectrophotometric Method for the Determination of Metoclopramide in Pharmaceutical Forms / J. Appl. Spectrosc. 2021. Vol. 88. N 2. P. 433 – 440. DOI: 10.1007/s10812-021-01191-7
31. Ratcliffe L. V., Rutten F. J. M., Barrett D. A., et al. Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry / Anal. Chem. 2007. Vol. 79. N 16. P. 6094 – 6101. DOI: 10.1021/ac070109q
32. Rutten F., Jamur J., Roach P. Fast and Versatile Ambient Surface Analysis by Plasma-Assisted Desorption/Ionisation Mass Spectrometry / Spectrosc. Eur. 2015. Vol. 27. N 6. P. 10 – 12. DOI: 10.1255/sew.2015.a2
33. Yonson S., Coulombe S., Léveillé, V., Leask R. L. Cell Treatment and Surface Functionalization Using a Miniature Atmospheric Pressure Glow Discharge Plasma Torch / J. Phys. D. Appl. Phys. 2006. Vol. 39. N 16. P. 3508 – 3513. DOI: 10.1088/0022-3727/39/16/S08
Рецензия
Для цитирования:
Jamur J. Optimization of Plasma-Assisted Desorption/Ionization-Mass Spectrometry for Analysis of Ibuprofen. Заводская лаборатория. Диагностика материалов. 2023;89(7):21-24. https://doi.org/10.26896/1028-6861-2023-89-7-21-24
For citation:
Jamur J. Optimization of Plasma-Assisted Desorption/Ionization-Mass Spectrometry for Analysis of Ibuprofen. Industrial laboratory. Diagnostics of materials. 2023;89(7):21-24. https://doi.org/10.26896/1028-6861-2023-89-7-21-24