

The effect of trapping sites introduced by 1 MeV proton irradiation on the reverse current recovery time in Ga2O3-based Schottky diodes
https://doi.org/10.26896/1028-6861-2023-89-7-25-33
Abstract
The reverse current recovery time is an important parameter of diodes, fast rectifiers and transistors which determined their high-frequency properties and area of application. Defects in the structure may sufficiency reduce the cutoff frequency and lead to overheating. The reverse recovery of the low currents in the α- and β-Ga2O3 Schottky diodes was measured and analyzed in this study. The reverse recovery time in the β-Ga2O3-based Schottky diode is limited mainly by the relaxation of the RC-circuit formed by the equivalent diode circuit and can be very low (20 nsec in this case). Irradiation can introduce some defects in the structure, which may act as deep levels and prolong the relaxation. We have demonstrated experimentally that increasing serial resistance of the circuit lead to an increase in the reverse recovery time. But we can point an additional part of relaxation that can be attributed to the emission from deep levels in the forbidden gap of the semiconductor. It is shown that prolongation increases with the reverse recovery time but saturates. In the α-Ga2O3-based structures the reverse recovery time measured after proton irradiation was 6 μsec, twice as high than it can be expected from RC-circuit relaxation time. These deep levels can be associated with interstitial oxygen atoms. The results obtained can be used to improve the technology of crystal growth to produce Schottky diodes with a high boundary frequency.
About the Authors
I. V. SchemerovRussian Federation
Ivan V. Schemerov
4, Leninsky prosp., Moscow, 119049
A. Ya. Polyakov
Russian Federation
Alexander Ya. Polyakov
4, Leninsky prosp., Moscow, 119049
P. B. Lagov
Russian Federation
Peter B. Lagov
4, Leninsky prosp., Moscow, 119049;
31, k. 4, Leninsky prosp., Moscow, 119071
S. P. Kobeleva
Russian Federation
Svetlana P. Kobeleva
4, Leninsky prosp., Moscow, 119049
A. I. Kochkova
Russian Federation
Anastasia I. Kochkova
4, Leninsky prosp., Moscow, 119049
Yu. O. Kulanchikov
Russian Federation
Yuri O. Kulanchikov
4, Leninsky prosp., Moscow, 119049
A. S. Doroshkevich
Russian Federation
Alexander S. Doroshkevich
13, ul. Jolio-Curie, Dubna, Moskovskaya obl., 141980
V. D. Kirilov
Russian Federation
Viktor D. Kirilov
4, Leninsky prosp., Moscow, 119049
References
1. Lax B., Neustadter S. Transient Response of a p – n Junction / J. Appl. Phys. 1954. Vol. 25. Issue 9. P. 1148 – 1154. DOI: 10.1063/1.1721830
2. Zhang M. A modified finite difference model to the reverse recovery of silicon PIN diodes / Solid-State Electronics. 2020. Vol. 171. P. 107893(1 – 13). DOI: 10.1016/j.sse.2020.107839
3. Kingston R. H. Switching Time in Junction Diodes and Junction Transistors / Proc. IRE. 1954. Vol. 42. N 5. P. 829 – 834. DOI: 10.1109/jrproc.1954.274521
4. Togatov V. V., Gnatyuk P. A. A method for measuring the lifetime of charge carriers in the base regions of high-speed diode structures / Semiconductors. 2005. Vol. 39. Issue 3. P. 360 – 363. DOI: 10.1134/1.1882802
5. Tien B., Hu C. Determination of carrier lifetime from rectifier ramp recovery waveform / IEEE Electron Device Lett. 1988. Vol. 9. N 10. P. 553 – 555. DOI: 10.1109/55.17842
6. Dean R. H., Nuese C. J. A refined step-recovery technique for measuring minority carrier lifetimes and related parameters in asymmetric p – n junction diodes / IEEE Transactions on Electron Devices. 1971. Vol. 18. N 3. P. 151 – 158. DOI: 10.1109/t-ed.1971.17167
7. Grigoriev B. I., Rudskoi V. A., Togatov V. V. Differencial method of minority carrier lifetime measurement in the power transistors / Prib. Tekh. Éksp. 1981. N 4. P. 226 – 228 [in Russian].
8. Lagov P. B., Drenin A. S., Zinoviev M. A. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing / J. Phys. Conf. Ser. 2017. Vol. 830. N 1. P. 012152(1 – 4). DOI: 10.1088/1742-6596/830/1/012152
9. Pavlov Y. S., Surma A. M., Lagov P. B., et al. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices / J. Phys. Conf. Ser. 2016. Vol. 747. N 1. P. 012085(1 – 7). DOI: 10.1088/1742-6596/747/1/012085
10. Kulevoy T. V., Losev A. A., Alekseev P. N., et al. Laser ion source for semiconductor applications / J. Phys. Conf. Ser. 2022. Vol. 2244. P. 012096(1 – 5). DOI: 10.1088/1742-6596/2244/1/012096
11. Anfimov I. M., Kobeleva S. P., Shchemerov I. V. Measurement of lifetime of nonequilibrium charge carriers in single-crystal silicon / Inorganic materials. 2015. Vol. 51. N 15. P. 1447 – 1451. DOI: 10.1134/S0020168515150029
12. Bulyarsky S. V., Zhukov A. V., Ermakov M. S., et al. Determination of the Recombination Center Parameters in Power Semiconductor Devices / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 4. P. 26 – 30 [in Russian].
13. Veher O., Sleptsuk N., Toompuu J., et al. The dependence of reverse recovery time on barrier capacitance and series on-resistance in Schottky diodes / WIT Transactions on Engineering Sciences. 2017. Vol. 116. P. 15 – 22. DOI: 10.2495/MC170021
14. Winterhalter C., Pendharkar S., Shenai K. A novel circuit for accurate characterization and modeling of the reverse recovery of high-power high-speed rectifiers / IEEE Transactions on Power Electronics. 1998. Vol. 13. N 5. P. 924 – 931. DOI: 10.1109/63.712311
15. Pearton S., Yang J., Cary IV P., et al. A review of Ga2O3 materials, processing, and devices / Appl. Phys. Rev. 2018. Vol. 5. P. 011301(1 – 57). DOI: 10.1063/1.5006941
16. Pearton S., Ren F., Tadjer M., Kim J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS featured / J. Appl. Phys. 2018. Vol. 124. P. 220901(1 – 19). DOI: 10.1063/1.5062841
17. Zhang J., Shi J., Qi D.-C., et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3 featured / APL Materials. 2020. Vol. 8. P. 020906(1 – 35). DOI: 10.1063/1.5142999
18. Langørgen A., Zimmermann C., Frodason Y., et al. Influence of heat treatments in H2 and Ar on the E1 center in β-Ga2O3 / J. Appl. Phys. 2022. Vol. 131. P. 115702(1 – 7). DOI: 10.1063/5.0083861
19. Polyakov A. Y., Smirnov N. B., Shchemerov I. V., et al. Deep trap spectra of Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy on sapphire / APL Materials. 2019. Vol. 7. P. 051103(1 – 7). DOI: 10.1063/1.5094787
20. Kucherova O. V., Zubkov V. I., Tsvelev E. O., et al. Nondestructive control of nanoheterostructures with multiple quantum wells InGaN/GaN using thermal spectroscopy of the admittance / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 3. P. 24 – 28 [in Russian].
21. Irmscher K., Galazka Z., Pietsch M., et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method / J. Appl. Phys. 2011. Vol. 110. P. 063720(1 – 7). DOI: 10.1063/1.3642962
22. Zhang Z., Farzana E., Arehart A., Ringel S. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy / Appl. Phys. Lett. 2016. Vol. 108. Issue 5. P. 052105(1 – 6). DOI: 10.1063/1.4941429
23. Polyakov A. Y., Smirnov N. B., Shchemerov I. V., et al. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage / Appl. Phys. Lett. 2018. Vol. 112. Issue 3. P. 032107(1 – 7). DOI: 10.1063/1.5012993
24. Kobayashi T., Gake T., Kumagai Yu., et al. Energetics and electronic structure of native point defects in α-Ga2O3 / Applied Physics Express. 2019. Vol. 12. N 9. P. 091001(1 – 6). DOI: 10.7567/1882-0786/ab3763
Review
For citations:
Schemerov I.V., Polyakov A.Ya., Lagov P.B., Kobeleva S.P., Kochkova A.I., Kulanchikov Yu.O., Doroshkevich A.S., Kirilov V.D. The effect of trapping sites introduced by 1 MeV proton irradiation on the reverse current recovery time in Ga2O3-based Schottky diodes. Industrial laboratory. Diagnostics of materials. 2023;89(7):25-33. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-25-33