

Study of black protective-decorative nanocomposite anodic coatings on the surface of AMg5 aluminum alloy
https://doi.org/10.26896/1028-6861-2023-89-7-34-44
Abstract
A widely used nanocomposite coating is a porous anodic alumina colored by particles of metals or their compounds deposited into the pores. The insertion of light-scattering nanosized particles into the pores changes the optical properties of the anodic oxide, whereas the immobilization of metal nanoparticles in pores ensures their corrosion resistance. We present the results of studying black protective and decorative coatings on the surface of AMg5 aluminum alloy. The surface morphology of the samples was analyzed using atomic force microscopy, and the electrophysical properties were monitored by electrochemical impedance spectroscopy (EIS). The growth kinetics of the anodic coating has been studied, and optimal conditions for the formation of a regularly porous oxide coating 10 – 12 μm thick with a regular pore diameter of 15 ± 5 nm on the alloy surface were determined. It is shown that subsequent electrochemical coloring for 15 min makes it possible to obtain a black color of the coatings due to the deposition of Cu and/or CuO nanoparticles into the pores. Simulation of electrical equivalent circuits makes it possible to separate and calculate the electrical parameters corresponding to different layers and elucidate their regular changes after coloring and hydrothermal treatment. The high corrosion resistance of electrochemically colored anodized alloy samples subjected to hydrothermal treatment has been revealed. The results obtained can be used in the application of protective and decorative anodic coatings for the manufacture, for example, of solar panels due to the high absorption and low reflectivity of black coatings.
About the Authors
N. M. YakovlevaRussian Federation
Natalia M. Yakovleva
33, prosp. Lenina, Petrozavodsk, 185910
A. N. Kokatev
Russian Federation
Alexander N. Kokatev
33, prosp. Lenina, Petrozavodsk, 185910
K. I. Oskin
Russian Federation
Kirill I. Oskin
33, prosp. Lenina, Petrozavodsk, 185910
K. V. Stepanova
Russian Federation
Kristina V. Stepanova
33, prosp. Lenina, Petrozavodsk, 185910
A. M. Shulga
Russian Federation
Alisa M. Shulga
33, prosp. Lenina, Petrozavodsk, 185910
References
1. Poznyak A. A. Anodic Alumina and Composite Materials Based on It: monograph. — Minsk: TsentrBGU, 2007. — 251 p. [in Russian].
2. Yakovleva N. M., Kokatev A. N., Chupakhina E. A., et al. Surface nanostructuring of metals and alloys. Part 1. Nanostructured anodic oxide films on Al and Al alloys / Kondens. Sredy Mezhfaz. Gran. 2015. Vol. 17. N 2. P. 137 – 152 [in Russian].
3. Yakovleva N. M., Yakovlev A. N., Gafiyatullin M. M., Denisov A. I. Computer mesoscopic structure diagnostics of nanoporous aluminum oxides / Zavod. Lab. Diagn. Mater. 2009. Vol. 75. N 2. P. 21 – 26 [in Russian].
4. Shizbi P., Pinner R. The surface treatment and finishing of aluminium and its alloys. — Moscow: Alyusil MViT, 2011. — 1416 p. [in Russian].
5. Frantsevich I. N. Anodic oxide coatings on lightweight alloys. — Kiev: Naukova dumka, 1977. — 260 p. [in Russian].
6. Averyanov E. E. Handbook of anodizing. — Moscow: Mashinostroenie, 1988. — 224 p. [in Russian].
7. Tsangaraki-Kaplanoglou I., Theohari S., Dimogerontakis Th., et al. An investigation of electrolytic coloring process of anodized aluminum coatings / Surf. Coat. Technol. 2006. Vol. 201. P. 2749 – 2759. DOI: 10.1016/j.surfcoat.2006.05.027
8. Shih H.-H., Huang Yu.-C. Study on the black electrolytic coloring of anodized aluminum in cupric sulfate / J. Mater. Process. Technol. 2008. Vol. 208. Issue 1 – 3. P. 24 – 28. DOI: 10.1016/j.jmatprotec.2007.12.119
9. Girginov Ch., Kanazirski I., Dimitrov T., Todorov V. Electrolytic colouring of anodic alumina films in metal ions containing solution. Part 2. Electrolytic colouring in CuSO4 containing solution / J. Univ. Chem. Technol. Metall. 2012. Vol. 47. N 2. P. 193 – 196.
10. Shaffei M. F., Awad A. M., Hussein H. S., Mohammed M. S. Nano structured aluminum oxide black coating for solar panels: double anodization using much improved energy saving process / ARPN J. Eng. Appl. Sci. 2015. Vol. 10. N 18. P. 7983 – 7990.
11. Shaffei M. F., Hussein H. S., Abouelata A. M., et al. Effect of sealing on characteristics of nano-porous aluminum oxide as black selective coatings / Cleaner Engineering and Technology. 2021. Vol. 4. P. 100156. DOI: 10.1016/j.clet.2021.100156
12. Girginov Ch., Kozhukharov S., Kiradzhiyska D., Mancheva R. Characterization of porous anodic alumina with AC-incorporated silver / Electrochim. Acta. 2018. Vol. 292. P. 614 – 627. DOI: 10.1016/j.electacta.2018.08.152
13. Kozhukharov S., Girginov Ch., Kiradzhiyska D., et al. Evaluation of the electrochemical performance of Ag containing AAO layers after extended exposure to a model corrosive medium / J. Electrochem. Sci. Eng. 2020. Vol. 10(4). P. 317 – 334. DOI: 10.5599/jese.820
14. Gonzalez J., Lopez V., Otero E., Bautista A. Postsealing changes in porous aluminium oxide films obtained in sulfuric acid solutions / J. Electrochem. Soc. 2000. Vol. 147. N 3. P. 984 – 990. DOI: 10.1149/1.1393301
15. Ono S., Asoh H. Mechanism of hot water sealing of anodic films formed on aluminum / Corr. Sci. 2021. Vol. 181. P. 109221. DOI: 10.1016/j.corsci.2020. 109221
16. Gnedenkov C. V., Sinebryukhov S. L., Sergienko V. I. Composite multifunctional coatings formed on the metals and alloys by plasma electrolytic oxidation. — Vladivostok: Dalnauka, 2013. — 460 p. [in Russian].
17. Semkina E. V., Tokareva I. A., Bairachnyi B. I. Electrochemical impedance spectroscopy of anodic oxides of aluminum and niobium / Tr. Odes. Politekhn. Univ. 2013. Issue 3(42). P. 216 – 220 [in Russian].
18. López V., Bartolomé M., Escudero E., et al. Comparison by SEM, TEM and EIS of Hydrothermally Sealed and Cold Sealed Aluminum Anodic Oxides / J. Electrochem. Soc. 2006. Vol. 153. N 3. P. B75 – B82. DOI: 10.1149/1.2163811
19. Franco M., Anoop S., Uma Rani R., Sharma A. Porous Layer Characterization of Anodized and Black-Anodized Aluminium by Electrochemical Studies / ISRN Corros. Vol. 2012. Art. ID 323676. P. 12. DOI: 10.5402/2012/323676
20. Girginov Ch., Kozhukharov S., Milanes M. Durability of anodic aluminum oxide (AAO) films formed on technically pure AA1050 alloy against corrosion / Bulg. Chem. Comm. 2018. Vol. 50. Issue A. P. 6 – 12.
21. Boisier G., Pébère N., Druez C., et al. FESEM and EIS Study of Sealed AA2024 T3 Anodized in Sulfuric Acid Electrolytes: Influence of Tartaric Acid / J. Electrochem. Soc. 2008. Vol. 155. N 11. P. C521 – C529. DOI: 10.1149/1.2969277
22. Oskin K. I., Yakovleva N. M., Chupakhina E. A., et al. Study of coloured anodized coatings on aluminum alloy by electrochemical impedance spectroscopy / Tr. Kol. Nauch. Tsentra RAN. Khim. Materialoved. 2021. Vol. 11. Issue 5. N 2. P. 197 – 204 [in Russian].
23. EIS Spectrum Analyzer Help / ABS ChemistRy. http://www.abc. chemistry.bsu.by/vi/analyser/help.html. (accessed 30.11.2022)
24. Module of image processing «Image Analysis P9». Reference Guide. — Moscow, 2011. — 206 p. [in Russian].
25. Yakovleva N. M., Shulga A. M., Stepanova K. V., et al. Microcone anodic oxide films on sintered niobium powders / Kondens. Sredy Mezhfaz. Gran. 2020. Vol. 22(1). P. 124 – 134 [in Russian]. DOI: 10.17308/kcmf.2020.22/2536
26. Marinello F., Pezzuolo A. Application of ISO 25178 standard for multiscale 3D parametric assessment of surface topographies / IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 275. P.012011. DOI: 10.1088/1755-1315/275/1/012011
27. Odynets L. L., Orlov V. M. Anodic oxide films. — Leningrad: Nauka, 1990. — 200 p. [in Russian].
Review
For citations:
Yakovleva N.M., Kokatev A.N., Oskin K.I., Stepanova K.V., Shulga A.M. Study of black protective-decorative nanocomposite anodic coatings on the surface of AMg5 aluminum alloy. Industrial laboratory. Diagnostics of materials. 2023;89(7):34-44. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-34-44