Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diametral compression of short cylinders with a central hole as a method for assessing the tear resistance of brittle materials

https://doi.org/10.26896/1028-6861-2023-89-7-45-50

Abstract

The possibility of evaluating the tear resistance of brittle materials by diametral compression test of short cylinders (solid and central with a central hole) has been analyzed. The computational analysis was performed by the finite element method using the ANSYS program. It is shown that the stress distribution in a disk with a hole is similar that without a hole but contains disturbances introduced by a stress concentrator in the form of a hole. The normalized values of the maximum first principal stresses for a disk with a hole exceed the values for a disk without a hole by more than 5 times. The experimental analysis was carried out by testing short cylinders, both solid and with a central hole, made of brittle materials: cast iron and graphite. It is noted that the fracture resistance, determined by the formula recommended by the ASTM D3967 – 95a standard, practically does not differ for solid cast iron samples, and for graphite differs by 1.5 times from the true tear resistance of materials; when testing samples with a central hole, the tear resistance differs from the standard values by a factor of 1.5 and almost 2.5, respectively. The different nature of the sample destruction is also noted: slow controlled rupture of cast iron and dynamic destruction of graphite with the corresponding deformation diagrams. The results of testing fuel pellets of uranium dioxide are given as an example of testing real cylindrical samples with a central hole. It is shown that the test results of ARV-1 graphite samples are in good agreement with the test results of fuel samples. Thus, the possibility of testing small-sized short cylinders according to the diametral compression scheme for indirect assessment of the tensile strength of brittle materials has been confirmed. A calculation formula is proposed for an indirect assessment of the tensile strength of brittle materials based on the results of testing small-sized short cylinders, both with and without a central hole according to the diametral compression scheme.

About the Authors

V. Yu. Goltsev
National Research Nuclear University «MEPhI»
Russian Federation

Vladimir Yu. Goltsev

31, Kashirskoe shosse, Moscow, 115409



A. V. Osintsev
National Research Nuclear University «MEPhI»
Russian Federation

Andrey V. Osintsev

31, Kashirskoe shosse, Moscow, 115409



A. S. Plotnikov
National Research Nuclear University «MEPhI»
Russian Federation

Aleksandr S. Plotnikov

31, Kashirskoe shosse, Moscow, 115409



V. I. Polskij
National Research Nuclear University «MEPhI»
Russian Federation

Valeriy I. Polskij

31, Kashirskoe shosse, Moscow, 115409



References

1. Rodriguez J., Navarro C., Sanchez-Galvez V. Splitting tests: an alternative to determine the dynamic tensile strength of ceramic materials / Journal de Physique IV Colloque. 1994. N 04(C8). P. C8-101 – C8-106. DOI: 10.1051/jp4:1994815

2. Bell F. G. Rock properties and their assessment / Selley, R. C., Ed. Encyclopedia of Geology. — Amsterdam: Elsevier, 2005. P. 566 – 580. DOI: 10.1016/b0-12-369396-9/00211-2

3. Drouet C., Largeot C., Raimbeaux G., Estournès C., Dechambre G., Combes C., Rey C. Bioceramics: spark plasma sintering (SPS) of calcium phosphates / Advances in Science and Technology. 2006. Vol. 49. P. 45 – 50. DOI: 10.4028/www.scientific.net/AST.49.45

4. Proveti J. R. C., Michot G. The Brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition / Int. J. Fract. 2006. 139. P. 455 – 460. DOI: 10.1007/s10704-006-0067-6

5. Akhtar F., Vasiliev P. O., Bergström L. Hierarchically Porous Ceramics from Diatomite Powders by Pulsed Current Processing / J. Am. Ceram. Soc. 2009. N 92(2). P. 338 – 343. DOI: 10.1111/j.1551-2916.2008.02882.x

6. Es-Saheb M. H., Albedah A., Benyahia F. Diametral compression test: validation using finite element analysis / Int. J. Adv. Manuf. Technol. 2011. Vol. 57. P. 501 – 509. DOI: 10.1007/s00170-011-3328-0

7. Bragov A. M., Konstantinov A. Y., Lamzin D. A., Lomunov A. K., Filippov A. R. Dynamic deformation and destruction of brittle structurally inhomogeneous media / Probl. Prochn. Plast. 2012. Issue 74. P. 59 – 67 [in Russian].

8. Molotnikov V. Ya., Molotnikova A. A. Notes on the Brazilian method for studying the tensile strength of brittle materials / Vestn. DGTU. 2014. Vol. 14. N 4(79). P. 30 – 38 [in Russian]. DOI: 10.12737/6889

9. Zaytsev D., Panfilov P. Deformation behavior of human dentin in liquid nitrogen: A diametral compression test / Materials Science and Engineering. 2014. Vol. 42. P. 48 – 51. DOI: 10.1016/j.msec.2014.05.011

10. Patil S. G., Sajjan M. S., Patil R. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study / J. Int. Oral Health. 2015. Vol. 7(2). P. 13 – 19.

11. Mazel V., Guerard S., Croquelois B., Kopp J.-B., Girardot J., Harona D., Busignies V., Tchoreloff P. Reevaluation of the diametral compression test for tablets using the flattened disc geometry / International Journal of Pharmaceutics. 2016. N 513(1 – 2). P. 669 – 677. DOI: 10.1016/j.ijpharm.2016.09.088

12. Rocha J. A. L., Wahrhaftig A. M. Superposition of Stress Fields in Diametrically Compressed Cylinders / Latin American Journal of Solids and Structures. 2016. Vol. 13. P. 1954 – 1967. DOI: 0. 1590/1679-782526

13. Zaitsev D. V., Kochanov A. N., Toktogulov Sh. Zh., Panteleev I. A., Panfilov P. E. Influence of the scale effect and heterogeneity of displaced rocks in determining their strength properties / Gorn. Inf.-Anal. Byull. 2016. N 11. P. 208 – 215 [in Russian].

14. Markides C. F., Kourkoulis S. K. Parametric study of the deformation of transversely isotropic discs under diametral compression / Frattura ed Integrità Strutturale. 2017. Vol. 41. P. 396 – 411. DOI: 10.3221/IGF-ESIS.41.51

15. Horynová M., Casas-Luna M., Montufar E. B., Diaz-de-la-Torre S., Celko L., Klakurková L., Diéguez-Trejo G., Dvorak K., Zikmund T., Kaiser J. Fracture Mechanism of Interpenetrating Iron-Tricalcium Phosphate Composite / Solid State Phenomena. 2017. Vol. 258. P. 333 – 336. DOI: 10.4028/www.scientific.net/SSP.258.333

16. Luginina M., Orru R., Cao G., Grossin D., Brouillet F., et al. First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: toward highlyresorbable reactive bioceramics / Journal of materials chemistry B, Royal Society of Chemistry. 2020. Vol. 8(4). P. 629 – 635. DOI: 10.1039/c9tb02121c

17. ASTM D3967-95a. Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens.

18. Wang Q. Z., Jiaa X. M., Koub S. Q., Zhangh Z. X., Lindgvistg P. A. / Int. J. of Rock Mechanics and Mining Sciences. 2004. Vol. 41. Issue 2. February. P. 245 – 253.

19. Grigoriev E. G., Rosliakov A. V. Electro-discharge compaction of WC-Co and W-Ni-Fe-Co composite materials / Journal of Materials Processing Technology. 2007. Vol. 191. N 1 – 3, P. 182 – 184. DOI: 10.1016/j.jmatprotec.2007.03.016

20. Smirnov K. L., Grigoryev E. G., Nefedova E. V. SiAlON-TiN Ceramic Composites by Electric Current Assisted Sintering / Materials Science Forum. 2019. Vol. 946. February. P. 53 – 57. DOI: 10.4028/www.scientific.net/MSF.946.53

21. Klyatskina E. A., Borrell A., Grigoriev E. G., Zholnin A. G., Salvador M. D., Stolyarov V. V. Structure features and properties of graphene Al2O3 composite / Journal of Ceramic Science and Technology. 2018. Vol. 9. N 3. P. 215 – 224. DOI: 10.4416/JCST2018-00006

22. Goltsev V. Y., Osintsev A. V., Plotnikov A. S. / Letters of Materials. 2017. Vol. 7(1). P. 21 – 25 [in Russian]. DOI: 10.22226/2410-3535-2017-1-21-25

23. Release 16. 2 Documentation for ANSYS [electronic document] / ANSYS Inc. Electronic data and software.

24. NAFEMS search engineering analysis and simulation — FEA, Finite Element Analysis, CFD, Computational Fluid Dynamics, and Simulation. — NAFEMS Ltd., Hamilton, United Kingdom.

25. Sutton M. A., Orteu J. J., Schreier H. W. Image Correlation for Shape, Motion and Deformation Measurements: basic concepts, theory and applications. — Springer, 2009. P. 321.

26. Chu T. C., Ranson W. F., Sutton M. A., Peters W. H. / Experimental mechanics. 1985. Vol. 25(3). P. 232 – 245.


Review

For citations:


Goltsev V.Yu., Osintsev A.V., Plotnikov A.S., Polskij V.I. Diametral compression of short cylinders with a central hole as a method for assessing the tear resistance of brittle materials. Industrial laboratory. Diagnostics of materials. 2023;89(7):45-50. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-45-50

Views: 336


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)