

Determination of the shaping behavior of thermoplastic composite materials required for simulation of thermoforming
https://doi.org/10.26896/1028-6861-2023-89-7-61-70
Abstract
The shaping of composite consolidated plates into products is a complex process. To obtain a defect-free product, we have to bear in mind that thermoplastics reinforced with a fabric practically do not stretch, and their shaping behavior is determined by the mechanisms of shear deformations within a layer or between layers, by the processes of sliding a composite over the surface of tooling and by the flexural rigidity of the consolidated plates. Due to the complex behavior of the material during deformation, the optimization of the thermoforming process by trial and error is rather expensive in implementation and can be successfully replaced by a preliminary simulation. The available software packages intended for modeling the thermoforming process which provide construction of a correct model of the material consistent with the reality, require the introduction of input parameters for the drape of the consolidated plate, its flexural stiffness, the coefficient of friction between layers and with tooling. However, until now there are no standards for their measurement, which significantly hinders the process of modeling the thermoforming of products from consolidated plates based on thermoplastic binders. We present experimental data on the determination of some physical and mechanical properties of carbon fiber reinforced plastics based on polypropylene PP01030, including tensile-displacement tests of the sample, tests with a moving frame that provide evaluating the shear behavior of thermoplastic composite materials, as well as tests for determining the interlayer friction and friction of a composite with tooling. The tests were carried out at the melting temperature of the matrix using specialized tooling, made taking into account the experience of foreign research groups in physical and mechanical testing of thermoplastic composite materials. A method for determining the flexural rigidity of thermoplastic carbon fiber reinforced plastics is proposed. The presented tooling does not require the application of a complex force, and needs only standard tensile test clamps of the testing machine. The data obtained from the physicomechanical tests can be used in virtual modeling of the thermoforming process of consolidated composite plates.
About the Authors
R. I. SolovyovRussian Federation
Ruslan I. Solovyov
10, ul. K. Marksa, Kazan, 420111
A. R. Safin
Russian Federation
Artem R. Safin
10, ul. K. Marksa, Kazan, 420111
D. A. Balkaev
Russian Federation
Dinar A. Balkaev
10, ul. K. Marksa, Kazan, 420111;
18, Kremlevskaya ul., Kazan, 420008
V. V. Batrakov
Russian Federation
Vladimir V. Batrakov
10, ul. K. Marksa, Kazan, 420111
L. M. Amirova
Russian Federation
Liliya M. Amirova
10, ul. K. Marksa, Kazan, 420111
References
1. Bhattacharyya D., Bowis M., Jayaraman K. Thermoforming woodfibre-polypropylene composite sheets / Composites science and technology. 2003. Vol. 63. N 3 – 4. P. 353 – 365. DOI: 10.1016/S0266-3538(02)00214-2
2. Dörr D., Gergely R., Ivanov S., et al. On the applicability of thermoforming characterization and simulation approaches to glass mat thermoplastic composites / Procedia Manufacturing. 2020. Vol. 47. P. 118 – 125. DOI: 10.1016/j.promfg.2020.04.148
3. Schlothauer A., Schwob N., Pappas G. A., Ermanni P. Thin-Ply Thermoplastic Composites for Foldable Structures / Book Thin-Ply Thermoplastic Composites for Foldable Structures / Editor. 2020. DOI: 10.2514/6.2020-0206
4. Xiong H., Hamila N., Boisse P. Consolidation modeling during thermoforming of thermoplastic composite prepregs / Materials. 2019. Vol. 12. N 18. P. 2853. DOI: 10.3390/ma12182853
5. Scherer R., Friedrich K. Inter-and intraply-slip flow processes during thermoforming of CF/PP-laminates / Composites Manufacturing. 1991. Vol. 2. N 2. P. 92 – 96. DOI: 10.1016/0956-7143(91)90185-J
6. Sadighi M., Rabizadeh E., Kermansaravi F. Effects of laminate sequencing on thermoforming of thermoplastic matrix composites / Journal of Materials Processing Technology. 2008. Vol. 201. N 1 – 3. P. 725 – 730. DOI: 10.1016/j.jmatprotec.2007.11.239
7. Wang P., Hamila N., Boisse P. Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix / Composites Part B: Engineering. 2013. Vol. 52. P. 127 – 136. DOI: 10.1016/j.compositesb.2013.03.045
8. Akkerman R., Haanappel S. Thermoplastic composites manufacturing by thermoforming / Advances in Composites Manufacturing and Process. — Design Elsevier, 2015. P. 111 – 129. DOI: 10.1016/B978-1-78242-307-2.00006-3
9. Friedrich K., Hou M. On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites / Composites Part A: Applied Science and Manufacturing. 1998. Vol. 29. N 3. P. 217 – 226. DOI: 10.1016/S1359-835X(97)00087-0
10. Ropers S. Bending behavior of thermoplastic composite sheets. — Springer, 2017. DOI: 10.1007/978-3-658-17594-8
11. Cartwright B., De Luca P., Wang J., et al. Some proposed experimental tests for use in finite element simulation of composite forming / Proceedings of the 12th International Conference on Composite Materials (ICCM-12), Paris, France. 1999. P. 5 – 9.
12. Machado M., Murenu L., Fischlschweiger M., Major Z. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming / Composites Part A: Applied Science and Manufacturing. 2016. Vol. 86. P. 39 – 48. DOI: 10.1016/j.compositesa.2016.03.032
13. Mostovoy G. E., Karpov A. P. Features of Mechanical Testing of Carbon and Carbon-Carbon Composite Materials at a Temperature up to 3000 °C / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 5. P. 56 – 61.
14. Potter K. Bias extension measurements on cross-plied unidirectional prepreg / Composites Part A: Applied Science and Manufacturing. 2002. Vol. 33. N 1. P. 63 – 73. DOI: 10.1016/S1359-835X(01)00057-4
15. Alsayednoor J., Lennard F., Yu W., Harrison P. Influence of specimen pre-shear and wrinkling on the accuracy of uniaxial bias extension test results / Composites Part A: Applied Science and Manufacturing. 2017. Vol. 101. P. 81 – 97. DOI: 10.1016/j.compositesa.2017.06.006
16. Polilov A. N., Arutyunova A. S., Tatus’ N. A. Effect of stress concentration near grips on the tensile strength of composites / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 11. P. 48 – 59. DOI: 10.26896/1028-6861-2020-86-11-48-59
17. Guzman-Maldonado E., Hamila N., Boisse P., Bikard J. Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites / Composites Part A: Applied Science and Manufacturing. 2015. Vol. 78. P. 211 – 222. DOI: 10.1016/j.compositesa.2015.08.017
18. Harrison P., Alvarez M. F., Anderson D. Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics / International Journal of Solids and Structures. 2018. Vol. 154. P. 2 – 18. DOI: 10.1016/j.ijsolstr.2016.11.008
19. Harrison P., Taylor E., Alsayednoor J. Improving the accuracy of the uniaxial bias extension test on engineering fabrics using a simple wrinkle mitigation technique / Composites Part A: Applied Science and Manufacturing. 2018. Vol. 108. P. 53 – 61. DOI: 10.1016/j.compositesa.2018.02.025
20. Haghi Kashani M., Hosseini A., Sassani F., et al. The role of intra-yarn shear in integrated multi-scale deformation analyses of woven fabrics: a critical review / Critical Reviews in Solid State and Materials Sciences. 2018. Vol. 43. N 3. P. 213 – 232. DOI: 10.1080/10408436.2017.1342597
21. Hosseini A., Kashani M. H., Sassani F., et al. Identifying the distinct shear wrinkling behavior of woven composite preforms under bias extension and picture frame tests / Composite Structures. 2018. Vol. 185. P. 764 – 773. DOI: 10.1016/j.compstruct.2017.11.033
22. Lebrun G., Bureau M. N., Denault J. Thermoforming-Stamping of Continuous Glass Fiber/Polypropylene Composites: Interlaminar and Tool-Laminate Shear Properties / Journal of Thermoplastic Composite Materials. 2016. Vol. 17. N 2. P. 137 – 165. DOI: 10.1177/0892705704035411
23. Selezneva M., Naouar N., Denis Y., Gorbatikh L., et al. Identification and validation of a hyperelastic model for self-reinforced polypropylene draping / International Journal of Material Forming. 2020. P. 1 – 11. DOI: 10.1007/s12289-020-01542-3
24. Cao J., Akkerman R., Boisse P., et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results / Composites Part A: Applied Science and Manufacturing. 2008. Vol. 39. N 6. P. 1037 – 1053. DOI: 10.1016/j.compositesa.2008.02.016
25. Wang P., Hamila N., Pineau P., Boisse P. Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test / Journal of Thermoplastic Composite Materials. 2012. Vol. 27. N 5. P. 679 – 698. DOI: 10.1177/0892705712454289
26. Mattner T., Körbel W., Wrensch M., Drummer D. Compensation of edge effects in picture frame testing of continuous fiber reinforced thermoplastics / Composites Part B: Engineering. 2018. Vol. 142. P. 95 – 101. DOI: 10.1016/j.compositesb.2018.01.009
27. Lomov S. V., Willems A., Verpoest I., et al. Picture frame test of woven composite reinforcements with a full-field strain registration / Textile Research Journal. 2006. Vol. 76. N 3. P. 243 – 252. DOI: 10.1177/0040517506061032
28. Willems A., Lomov S. V., Verpoest I., Vandepitte D. Optical strain fields in shear and tensile testing of textile reinforcements / Composites Science and Technology. 2008. Vol. 68. N 3 – 4. P. 807 – 819. DOI: 10.1016/j.compscitech.2007.08.018
29. Mattner T., Wrensch M., Drummer D. Shear behavior of woven and non-crimp fabric based thermoplastic composites at near-processing conditions / Composites Part B: Engineering. 2020. Vol. 185. P. 107761. DOI: 10.1016/j.compositesb.2020.107761
30. Sachs U., Akkerman R., Fetfatsidis K., et al. Characterization of the dynamic friction of woven fabrics: experimental methods and benchmark results / Composites Part A: Applied Science and Manufacturing. 2014. Vol. 67. P. 289 – 298. DOI: 10.1016/j.compositesa.2014.08.026
31. Zouari B., Daniel J.-L., Boisse P. A woven reinforcement forming simulation method. Influence of the shear stiffness / Computers & structures. 2006. Vol. 84. N 5 – 6. P. 351 – 363. DOI: 10.1016/j.compstruc.2005.09.031
Review
For citations:
Solovyov R.I., Safin A.R., Balkaev D.A., Batrakov V.V., Amirova L.M. Determination of the shaping behavior of thermoplastic composite materials required for simulation of thermoforming. Industrial laboratory. Diagnostics of materials. 2023;89(7):61-70. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-7-61-70