Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of indium antimonide single crystals obtained by the modernized Chokhralsky method in several crystallographic directions

https://doi.org/10.26896/1028-6861-2023-89-8-38-46

Abstract

Single-crystal indium antimonide InSb is an indispensable material in such branches of solid-state electronics as opto- and nanoelectronics. In turn, the dislocation density and the character of their distribution, which directly depend on the technological parameters of the growth process, considerably determine the physical and mechanical properties of the material. We present the results of studying InSb single crystals obtained by the modernized Czochralski method in the crystallographic directions [100], [111], and [112]. The effect of growth conditions (axial and radial temperature gradients at the crystallization front) on the dislocation structure of InSb plates and the structural properties of the plates were analyzed. Using the method of selective etching it was shown that the number of etching pits on the wafers with different orientations differs by approximately an order of magnitude (103 cm2 for plane (111) and 102 cm2 for (100)). Number of etch pits for the (100) plane is commensurate with their number in crystals grown in the [112] and [100] directions. Probably, the maximum dislocation density in InSb single crystals can be considered as a material constant, and the increased strength of single crystals grown at lower axial gradients at the crystallization front is related to the formation of a characteristic ensemble of point defects along the dislocation line through diffusion. It is shown that InSb wafers [112] (100) exhibit the best physical and mechanical properties. The results obtained can be used in the manufacture of structures for photodetectors, in particular, in plate processing (cutting, grinding and polishing) to optimize technological processes.

About the Authors

N. Yu. Komarovsky
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology «MISiS»
Russian Federation

Nikita Yu. Komarovsky

2, str. 1, Elektrodnaya ul., Moscow, 111524

4, str. 1, Leninsky prosp., Moscow, 119049



E. V. Molodtsova
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

Elena V. Molodtsova

2, str. 1, Elektrodnaya ul., Moscow, 111524



A. G. Belov
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

Aleksandr G. Belov

2, str. 1, Elektrodnaya ul., Moscow, 111524



M. B. Grishechkin
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

Mihail B. Grishechkin

2, str. 1, Elektrodnaya ul., Moscow, 111524



R. Yu. Kozlov
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology «MISiS»
Russian Federation

Roman Yu. Kozlov

2, str. 1, Elektrodnaya ul., Moscow, 111524

4, str. 1, Leninsky prosp., Moscow, 119049



S. S. Kormilitsina
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology «MISiS»
Russian Federation

Svetlana S. Kormilitsina

2, str. 1, Elektrodnaya ul., Moscow, 111524

4, str. 1, Leninsky prosp., Moscow, 119049



E. O. Zhuravlev
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology «MISiS»
Russian Federation

Evgeny O. Zhuravlev

2, str. 1, Elektrodnaya ul., Moscow, 111524

4, str. 1, Leninsky prosp., Moscow, 119049



M. S. Nestyurkin
Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC); National University of Science and Technology «MISiS»
Russian Federation

Mihail S. Nestyurkin

2, str. 1, Elektrodnaya ul., Moscow, 111524

4, str. 1, Leninsky prosp., Moscow, 119049



References

1. Grinchenko L. Ya., Ponomarenko V. P., Filachyov A. M. Current status and prospects for infrared photoelectronics / Prikl. Fiz. 2009. N 2. P. 57 – 64 [in Russian].

2. Intel and QinetiQ Collaborate on Transistor Research. Intel promotional materials. http://www.intel.com/pressroom/arhive/releass/2005/20050208corp.html (accessed 28.03.2023).

3. Lattice Parameter of indium antimonide (InSb). https://link.springer.com/chapter/10.1007/978-1-4615-5247-5$27 (accessed 28.03.2023).

4. Filachev A. M., Taubkin I. I., Trishenkov M. A. Solid state photoelectronics, Physical fundamentals. — Moscow: Fizmatkniga, 2005. — 236 p. [in Russian].

5. Avery D. G., Goodwin D. W., Lawson W. D., Moss T. S. Optical and photo-electrical properties of indium antimonide / Proc. Phys. Soc. Sect. B. 1954. Vol. 67. N 10. P. 761 – 767. DOI: 10.1088/0370-1301/67/10/304

6. Kulchicky N. A., Naumov A. V., Startsev V. V. Infrared matrix photodetectors: ‘post-pandemic’ trends. P. 1 / Fotonika. 2020. Vol. 14. N 3. P. 234 – 245 [in Russian]. DOI: 10.22184/1993-7296.FRos.2020.14.4.320.330

7. Compound Wafer Products. InSb. http://eandmint.co.jp/eng/wafer/product_detail/product_insb.html (accessed 28.03.2023).

8. InSb Indium Antimonide. http://www.wafertech.co.uk/products/indium-antimonide-insb (accessed 28.03.2023).

9. Czochralski Crystal Growth. http://www.galaxywafer.com/galaxy/products/indium-antimonide-insb (accessed 28.03.2023).

10. Mena J. E. F., Ojeda R. C., Reyes J. D. InSb Czochralski growth single crystals for InGaSb substrates / MRS Online Proceedings Library (OPL). 2014. Vol. 1616. P. 1 – 8. DOI: 10.1557/opl.2014.234

11. Mohan P., Senguttuvan N., Moorthy Babu S., et al. Bulk growth of InSb crystals for infrared device applications / J. Crystal Growth. 1999. Vol. 200. N 1 – 2. P. 96 – 100. DOI: 10.1016/s0022-0248(98)01398-0

12. Merrell J. L., Gray N. W., Bolke J. G., et al. Enabling on-axis InSb crystal growth for high-volume wafer production: characterizing and eliminating variation in electrical performance for IR focal plane array applications / Infrared Technol. Appl. XLII. SPIE. 2016. Vol. 42. P. 285 – 297. DOI: 10.1117/12.2223956

13. Kozlov R. Yu., Kormilitsina S. S., Molodtsova E. V., Zhuravlev E. O. Cultivation of indium antimonide single crystals 100 mm in diameter by the modified Czochralski method / Izv. Vuzov. Mater. Élektron. Tekhn. 2021. Vol. 24. N 3. P. 190 – 198 [in Russian]. DOI: 10.17073/1609-3577-2021-3-190-198

14. Markov A. V., Milvidsky M. G., Osvensky V. B. On the role of dislocations in the formation of properties of GaAs semi-insulating single crystals / Fiz. Tekhn. Poluprovodn. 1986. Vol. 20. N 4. P. 634 – 640 [in Russian].

15. Knyazev S. N., Kudrya A. V., Komarovskiy N. Y., et al. Methods of dislocation structure characterization in AIIIBV semiconductor single crystals / Modern Electr. Mater. 2022. Vol. 8. N 4. P. 131 – 140. DOI: 10.3897/j.moem.8.4.99385

16. Milvidsky M. G., Osvensky V. B. Structural defects in epitaxial layers of semiconductors. — Moscow: Metallurgiya, 1985. — 160 p. [in Russian].

17. Mukherjee K. Materials science of defects in GaAs-based semiconductor lasers / Reliability of Semiconductor Lasers and Optoelectronic Devices. — Stanford university, 2021. P. 113 – 176. DOI: 10.1016/B978-0-12-819254-2.00007-2

18. Kormilitsina S. S., Molodtsova E. V., Knyazev S. N., et al. Study of the effect of treatment on the strength of unalloyed indium antimonide monocrystalline wafers / Izv. Vuzov. Mater. Élektron. Tekhn. 2021. Vol. 24. N 1. P. 48 – 56 [in Russian]. DOI: 10.17073/1609-3577-2021-1-48-56

19. Mezhenny M. V., Pavlov V. F. Dependence of the systematic error in the measurement of diffraction angles on the goniometer and sample setting / Zavod. Lab. Diagn. Mater. 2013. Vol. 79. N 2. P. 39 – 42 [in Russian].

20. Gavrilov K. V., Kanevsky V. E., Pavlov V. F. Evaluation of the maximum permissible angle of deviation of the crystallographic plane (hkl) from the specified geometric plane of a monocrystalline sample when determining it using the standard methodology / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 12. P. 43 – 44 [in Russian].

21. Indium antimonide (InSb). https://giredmet.ru/ru/production/antimonid-indiya-insb (accessed 29.12.2022) [in Russian].

22. Fainshtein S. M. Surface treatment and protection of semiconductor devices. — Moscow: Énergiya, 1970. — 256 p. [in Russian].

23. Levchenko D. S., Teplova T. B., Yugova T. G. Investigation of the dislocation structure of gallium arsenide single crystals used for ultrafast microelectronics devices / II Int. Sci. and Pract. Conf. «Economics and Practical Management in Russia and Abroad»: collection of materials. — Moscow: Kolomensky institute, 2015. P. 135 – 137 [in Russian].

24. Sangval K. Crystal etching: Theory. Experiment. Applications. — Moscow: Mir, 1990. — 483 p. [Russian translation].

25. Naimi E. K., Bazalevskaya S. S., Kugaenko O. M., Petrakov V. S. Investigation of acoustic parameters of lanthanum gallium tantalate single crystals subjected to cyclic deformation and thermal shock / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 11. P. 28 – 35 [in Russian]. DOI: 10.26896/1028-6861-2018-84-11-28-35

26. Gorin S. N. Semiconductor etching. — Moscow: Mir, 1965. — 382 p. [in Russian].

27. Mironov R. A., Zabezhajlov M. O., Yakushkina V. S., Rusin M. Yu. Determination of the particle size distribution of zirconium dioxide powder by static laser scattering and optical microscopy / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 11. P. 32 – 36 [in Russian].

28. Kudrya A. V., Sokolovskaya E. A., Le Haj Nin, et al. Assessment of fracture structure and structures in structural steels using computerised procedures / Vektor Nauki Tolyatti. Gos. Univ. 2015. N 4. P. 44 – 52 [in Russian]. DOI: 10.18323/2073-5073-2015-4-44-52

29. Milvidsky M. G., Osvensky V. B. Structural defects in semiconductor single crystals. — Moscow: Metallurgiya, 1984. — 256 p. [in Russian].

30. Shtremel M. A. Strength of alloys. Part 1 / Metallurgiya. 1982. Vol. 7. P. 130 – 139 [in Russian].

31. Vlasova A. M. Dislocation locking in the absence of external stress in magnesium single crystals and comparison with autoblocking in intermetallics / Fundam. Issl. 2013. N 11 – 3. P. 447 – 450 [in Russian].

32. Ezhlov V. S., Milvidskaya A. G., Molodtsova E. V., et al. Investigation of the properties of large indium antimonide single crystals grown by the Czochralski method in the crystallographic direction [100] / Izv. Vuzov. Mater. Élektron. Tekhn. 2015. N 2. P. 13 – 17 [in Russian].

33. Gubert I. V. Influence of elastic stresses on the formation of germanium single crystals / IX All-Russian Scientific and Technical Conference «Youth and Science»: collection of materials. — Krasnoyarsk: Sibir. Fed. Univ., 2013 [in Russian].

34. Mezhenny M. V., Milvidsky M. G., Pavlov V. F. Dynamic properties of dislocations in silicon wafers heat-treated at low temperatures / Fiz. Tv. Tela. 2001. Vol. 43. N 1. P. 47 – 50 [in Russian].

35. Markov A. V., Milvidsky M. G., Osvensky V. B. Formation of dislocation-induced heterogeneity in gallium arsenide crystals / Zh. Tekhn. Fiz. 1989. Vol. 59. N 2. P. 106 – 110 [in Russian].


Review

For citations:


Komarovsky N.Yu., Molodtsova E.V., Belov A.G., Grishechkin M.B., Kozlov R.Yu., Kormilitsina S.S., Zhuravlev E.O., Nestyurkin M.S. Study of indium antimonide single crystals obtained by the modernized Chokhralsky method in several crystallographic directions. Industrial laboratory. Diagnostics of materials. 2023;89(8):38-46. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-8-38-46

Views: 519


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)