Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

The electroplastic effect in coarse-grained and ultrafine-grained titanium

https://doi.org/10.26896/1028-6861-2023-89-8-62-66

Аннотация

One of the well-known features of the external action of the electric current in the process of plastic deformation is the electroplastic effect manifesting in a decrease in flow stresses and an increase in plasticity (deformability). Understanding the nature of the electroplastic effect provides targeted regulation and application of the effect to improve the efficiency of metal working processes or to change the structure and properties of materials. The deformation behavior of commercially pure titanium under the impact of an electric current of critical density from 12 to 400 A/mm2 is considered. The electroplastic effect in coarse-grained (d = 50 μm) and ultrafine-grained (d = 500 nm) VT1-0 titanium has been studied under a combination of tensile deformation and applied current of various modes and regimes, including the single-pulse, multipulse and direct current modes. It is shown that a decrease in the grain size contributes not only to an increase in the strength characteristics, but also to a decrease in the electroplastic effect, the mechanism of which is closely related to the density of mobile dislocations. It has been shown that the manifestation of the electroplastic effect in titanium is controlled by the grain size, and a decrease in the grain size leads to its electroplastic degradation and finally to the complete disappearance in the amorphous state due to a decrease in the density of free dislocations.

Об авторе

V. V. Stolyarov
Mechanical Engineering Research Institute of RAS
Россия

Vladimir V. Stolyarov

4, Maly Kharitonievsky per., Moscow, 101990



Список литературы

1. Troitskii O. A. Electromechanical effect in metals / Letter to JETP. 1969. Vol. 10. N 1. P. 18 – 22.

2. Conrad H. Electroplasticity in Metals and Ceramics / Mater. Sci. Eng. 2000. Vol. A 287. P. 276 – 287. DOI: 10.1016/S0921-5093(00)00786-3

3. Adams D., Jeswie J. Single-point incremental forming of 6061-T6 using electrically assisted forming method / Proc. Inst. Mech. Eng. Part B. J. Eng. Manufact. 2014. P. 1 – 8. DOI: 10.1177/0954405413501670

4. Egea A. J. S., Rojas H. A. G., Montana C. A. M., Echeverri V. K. Effect of electroplastic cutting on the manufacturing process and surface properties / J. Mater. Proc. Tech. 2015.222. P. 327 – 334. DOI: 10.1016/j.jmatprotec.2015.03.018

5. Potapova A. A., Stolyarov V. V. Deformability and shape memory properties in Ti50Ni50 rolled with electric current / Mater. Sci. Forum. 2013. Vol. 738 – 739. P. 383 – 387. DOI: 10.1016/j.msea.2013.05.003

6. Bilyka S. R., Ramesh K. T., Wright T. W. Finite deformations of metal cylinders subjected to electromagnetic fields and mechanical forces / J. Mech. Phys. Solids. 2005. Vol. 53. P. 525 – 544. DOI: 10.1016/j.jmps.2004.10.002

7. Sprecher A. F., Mannant S. L., Conrad H. On the mechanisms for the electroplastic effect in metals / Acta Metall. 1986. Vol. 34. N 7. P. 1145 – 1162.

8. Dubinko V. I., Dovbnya A. N., Kushnir V. F., Khodak I. V., et. al. Plastification FCC metals during of electron radiation / Phys. Solid State. Vol. 54. N 12. P. 2314 – 2320.

9. Dubinko V. I., Klepikov V. F. Kinetic mechanism of metals electroplasticity / Izv. RAN. Fiz. 2008. Vol. 72. P. 1257 – 1258 [in Russian].

10. Kim M. J., Yoon S., Park S., Jeong H. J., et al. Elucidating the origin of electroplasticity in metallic materials / Appl. Mater. Today. 2020. Vol. 21.100874. DOI: 10.1016/j.apmt.2020.100874

11. Lahiri A., Shanthraj P., Roters F. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective / Modell. Simul. Mater. Sci. Eng. 2019. Vol. 27. 085006. DOI: 10.1088/1361-651X/ab43fc

12. Stolyarov V. V. Electroplastic effect in nanocrystal and amorphous alloys / Inorg. Mater. 2016. Vol. 52. N 15. P. 1541 – 1544.

13. Stolyarov V. V., Klyatskina E. A., Terentyev V. F. Suppression of TRIP effect in metastable steel by electrical current / Letts. Mater. 2016. Vol. 6. N 4. P. 355 – 359. DOI: 10.1134/S0020168516150152

14. Stolyarov V. V. Electroplastic effect in nanostructured titanium alloys / Rev. Adv. Mater. Sci. 2012. Vol. 31. P. 163 – 166.

15. Okazaki K., Kagawa M., Conrad H. A study of the electroplastic effect in metals / Scr. Metal. 1978. Vol. 12. P. 1063 – 1068.

16. Okazaki K., Kagawa M., Conrad H. Additional results on the electroplastic effect in metals / Scr. Metal. 1979. Vol. 13. P. 277 – 280.

17. Okazaki K., Kagawa M., Conrad H. An Evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium / Mater. Sci. Eng. 1980. Vol. 45. P. 109 – 116.

18. Salandro W. A., Bunget C., Mears L. Thermo-mechanical investigations of the electroplastic effect / Proc. ASME. 2011. Corvallis, Oregon, USA, P. 1 – 10. DOI: 10.1115/MSEC2011-50250

19. Magargee J., Morestin F., Cao J. Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation / J. Eng. Mater. Technology. 2013. Vol. 135. P. 1 – 10. DOI: 10.1115/MSEC2013-1069

20. Stolyarov V. V. Role of external impacts in nanostructured titanium alloys / Byull. RAN. Fizika. 2012. Vol. 76. P. 96 – 101 [in Russian]. DOI: 10.3103/S1062873812010273

21. Pakhomov M. A., Stolyarov V. V. Specific features of electroplastic effect in mono- and polycrystalline aluminum / Metal Sci. Heat Treat. 2021. Vol. 63. N 5 – 6. P. 236 – 242. DOI: 10.1007/sec11041-021-00677-7

22. Zhao S., Zhang R., Chong Y., Li X. Defect reconfiguration in a Ti – Al alloy via electroplasticity / Nature Mater. 2021. Vol. 20. P. 468 – 472. DOI: 10.1038/sec41563-020-00817-z


Рецензия

Для цитирования:


Stolyarov V.V. The electroplastic effect in coarse-grained and ultrafine-grained titanium. Заводская лаборатория. Диагностика материалов. 2023;89(8):62-66. https://doi.org/10.26896/1028-6861-2023-89-8-62-66

For citation:


Stolyarov V.V. The electroplastic effect in coarse-grained and ultrafine-grained titanium. Industrial laboratory. Diagnostics of materials. 2023;89(8):62-66. https://doi.org/10.26896/1028-6861-2023-89-8-62-66

Просмотров: 256


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)