

Determination of seafood spoilage by digital colorimetry of indicator test systems
https://doi.org/10.26896/1028-6861-2023-89-9-25-33
Abstract
A simple and affordable colorimetric procedure for determination of the seafood spoilage (e.g., shrimp, squid, catfish and herring) using a smartphone and chemometric analysis is considered. The proposed colorimetric sensor consists of 12 zones, i.e., disks of cellulose paper 4 mm in diameter impregnated with acid-base indicators with a color change in the pH range of 3 – 8.8. Spoiling of the seafood is accompanied with a release of volatile biogenic amines that change the color of the indicator zones. A device and a method for measuring the colorimetric parameters of a test system using a smartphone as a recording device equipped with a specialized RGBer product are described. Processing of the data array (the sum of the R, G, and B channel values for each indicator, or the R, G, and B values for individual indicators) was performed using the XLSTAT software. Patterns of the degradation of food products identified in the study made it possible to propose a method for assessing the quality of seafood in real time. The optimal time regime of heat treatment of the sample was determined, which is necessary for the isolation of biogenic amines and the formation of an analytical signal. The parameters for identification of the seafood spoilage are the values of the main component F1 (or the position of the images on the canonical function projection graph) after evaluating the colorimetric data using the principal component method. The results obtained with a colorimetric sensor match the data for determination of the total microbial number of the analyzed products. The considered method for assessing spoilage of the seafood is distinguished by the simplicity of hardware design, the availability of the materials and software resources used, the rapidity of the procedure, and the mobility of the means for recording the analytical signal.
About the Authors
V. G. AmelinRussian Federation
Vasily G. Amelin
87, ul. Gor’kogo, Vladimir, 600000,
5, Zvenigorodskoye shosse, Moscow, 123022
Z. A.Ch. Shogah
Russian Federation
Zen Alabden Ch. Shogah
87, ul. Gor’kogo, Vladimir, 600000
D. S. Bolshakov
Russian Federation
Dmitry S. Bolshakov
14, Vladimirskaya ul., Volginsky, Petushki rayon, Vladimir oblast’, 601125
A. V. Tretyakov
Russian Federation
Alexey V. Tretyakov
5, Zvenigorodskoye shosse, Moscow, 123022
I. S. Nesterenko
Russian Federation
Irina S. Nesterenko
5, Zvenigorodskoye shosse, Moscow, 123022
L. K. Kish
Russian Federation
Leonid K. Kish
5, Zvenigorodskoye shosse, Moscow, 123022
References
1. Nie X., Zhang R., Cheng L., et al. Mechanisms underlying the deterioration of fish quality after harvest and methods of preservation / Food control. 2022. Vol. 135. 108805. DOI: 10.1016/j.foodcont.2021.108805
2. Morsy M. K., Zor K., Kostesha N., et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring / Food Control. 2016. Vol. 60. P. 346 – 352. DOI: 10.1016/j.foodcont.2015.07.038
3. Zaragoza P., Fuentes A., Ruiz-Rico M., et al. Development of a colorimetric sensor array for squid spoilage assessment / Food Chem. 2015. Vol. 175. P. 315 – 321. DOI: 10.1016/j.foodchem.2014.11.156
4. Huang X., Xin J., Zhao J. A novel technique for rapid evaluation of fish freshness using colorimetric sensor array / J. Food Eng. 2011. Vol. 105. N 4. P. 632 – 637. DOI: 10.1016/j.foodeng.2011.03.034
5. Moradi M., Tajik H., Almasi H., et al. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness / Carbohydr. Polym. 2019. Vol. 222. 115030. DOI: 10.1016/j.carbpol.2019.115030
6. Ezati P., Bang Y., Rhim J. Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork / Food Chem. 2021. Vol. 337. 127995. DOI: 10.1016/j.foodchem.2020.127995
7. Sun W., Li H., Wang H., et al. Sensitivity enhancement of pH indicator and its application in the evaluation of fish freshness / Talanta. 2015. Vol. 143. P. 127 – 131. DOI: 10.1016/j.talanta.2015.05.021
8. Mohammadalinejhad S., Almasi H., Moradi M. Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp / Food Control. 2020. Vol. 113. 107169. DOI: 10.1016/j.foodcont.2020.107169
9. Loughran M., Diamond D. Monitoring of volatile bases in fish sample headspace using an acidochromic dye / Food Chem. 2000. Vol. 69. N 1. P. 97 – 103. DOI: 10.1016/S0308-8146(99)00224-1
10. Kang S., Wang H., Xia L., et al. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring / Carbohydr. Polym. 2020. Vol. 229. 115402. DOI: 10.1016/j.carbpol.2019.115402
11. Gasti T., Dixit S., D’souza O. J., et al. Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet / Int. J. Biolog. Macromol. 2021. Vol. 187. P. 451 – 461. DOI: 10.1016/j.ijbiomac.2021.07.128
12. Dole T., Koltun S., Baker S. M., et al. Colorimetric evaluation of mahi-mahi and tuna for biogenic amines / J. Aquatic Food Prod. Technol. 2017. Vol. 26. N 7. P. 781 – 789. DOI: 10.1080/10498850.2017.1297879
13. Bai J., Baker S. M., Goodrich-Schneider R. M., et al. Development of a rapid colorimetric strip method for determination of volatile bases in mahi-mahi and tuna / J. Food Sci. 2021. Vol. 86. N 6. P. 2398 – 2409. DOI: 10.1111/1750-3841.15737
14. Shogah Z. A. C., Bolshakov D. S., Amelin V. G. Using Smartphones in Chemical Analysis / J. Anal. Chem. 2023. Vol. 78. N 4. P. 403 – 425. DOI: 10.1134/S1061934823030139
15. GOST 10444.15–94. Food products. Methods for determining the number of mesophilic aerobic and facultative anaerobic microorganisms. — Moscow: Standartinform, 2010. — 7 p. [in Russian].
Review
For citations:
Amelin V.G., Shogah Z.A., Bolshakov D.S., Tretyakov A.V., Nesterenko I.S., Kish L.K. Determination of seafood spoilage by digital colorimetry of indicator test systems. Industrial laboratory. Diagnostics of materials. 2023;89(9):25-33. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-9-25-33