Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Influence of the iron additive on the microstructural behavior of an aluminum-copper foundry alloy B206

https://doi.org/10.26896/1028-6861-2023-89-9-48-52

Аннотация

Although used and studied since the beginning of the century, the mechanical properties of aluminum-based structural hardening alloys still conceal some secrets that metallurgists are trying to uncover. In this work we are interested in aluminum alloys and more particularly in an Al-Cu alloy. The main objective of this work was to study the influence of structural hardening heat treatments on the evolution of the mechanical and structural properties of B206 alloys. For that, we used several experimental methods adapted to this kind of scientific work. We quote essentially: the thermal treatments of setting in hardening, as well as measurements of the hardness. The analysis of the experimental results obtained by these methods allowed us to explain and to affirm that Al-Cu alloys do not give appreciable structural hardening; because of the difficulty of diffusion of iron and silicon which influences the treatment and brought in a general way to the precipitation of the phase β; plays an important role in the evolution of the mechanical characteristics of Al-Cu alloys.

Ключевые слова


Об авторах

R. Younes
Université de Bejaia
Алжир

Rassim Younes

Laboratoire de Mécanique, Matériaux et énergétique (L2ME), Faculté de Technologie

06000 Bejaia



М. Bournane
Université du Québec à Chicoutimi
Канада

Mohamed Bournane

255 Boulevard de Université, Chicoutimi, QC G7H 2B1



А. Idir
Université de Bejaia
Алжир

Abdelhek Idir

Laboratoire de Mécanique, Matériaux et énergétique (L2ME), Faculté de Technologie

06000 Bejaia



I. Bouklouche
Université de Bejaia
Алжир

Issam Bouklouche

Laboratoire de Mécanique, Matériaux et énergétique (L2ME), Faculté de Technologie

06000 Bejaia



М. А. Bradai
Université de Bejaia
Алжир

Mohand Amokrane Bradai

Laboratoire de Mécanique, Matériaux et énergétique (L2ME), Faculté de Technologie

06000 Bejaia



А. Sadeddine
Université de Bejaia
Россия

Abdelhamid Sadeddine

 



Список литературы

1. Kamal Jayaraj R., Malarvizhi S., Balasubramanian V. Optimizing the micro-arc oxidation (MAO) parameters to attain coatings with minimum porosity and maximum hardness on the friction stir welded AA6061 aluminium alloy welds / Defence Technology. 2017. N 13. P. 111 – 117. DOI: 10.1016/j.dt.2017.03.003

2. Wang Xf., Guo Mx., Cao Ly., et al. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys / Int. J. Miner Metall Mater. 2015. N 22. P. 738 – 747. DOI: 10.1007/s12613-015-1129-4

3. Kolbeinsen L. The beginning and the end of the aluminium value chain Matériaux & Techniques / Norwegian University of Science and Technology — NTNU. 2020. Vol. 108. P. 506.

4. Ganjehfard K., Taghiabadi R., Noghani M., et al. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si / Int. J. Miner. Met. Mater. 2021. N 28. P. 718 – 728. DOI: 10.1007/s12613-020-2039-7

5. Sheykh-jaberi F., Cockcroft S., Maijer D., Phillion A. Comparison of the semi-solid constitutive behaviour of A356 and B206 aluminum foundry alloys / J. Mater. Proc. Technol. 2019. Vol. 266. P. 37. DOI: 10.1016/j.jmatprotec.2018.10.029

6. Prach O., Trudonoshyn O., Randelzhofer P., et al. Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn high-pressure die casting alloys / Mater. Sci. Eng. A. 2019. Vol. 759. P. 603. DOI: 10.1016/j.msea.2019.05.038

7. Bai S., Perevoshchikova N., Sha Y., Wu X. The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the Archimedes method / Appl. Sci. 2019. Vol. 9. N 3. P. 583. DOI: 10.3390/app9030583

8. Bai Q., Li H., Du Q., et al. Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature / Int. J. Miner. Met. Mater. 2016. Vol. 23. P. 949 – 958. DOI: 10.1007/s12613-016-1311-3

9. D’Elia F., Ravindran C., Sediako D., et al. Hot tearing mechanisms of B206 aluminum-copper alloy / Mater. Des. 2014. Vol. 64. P. 44. DOI: 10.1016/j.matdes.2014.07.024

10. Yakovleva A. O., Belov N. A., Bazlova T. A., et al. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al – 5% Si – 4% Cu Alloy / Phys. Met. Metallogr. 2018. Vol. 119. P. 35 – 43. DOI: 10.1134/S0031918X18010167

11. Belov N. A., Stolyarova O. O., Yakovleva A. O. Effect of lead on the structure and phase composition of an Al – 5% Si – 4% Cu casting alliy / Russ. Met. (Metally). 2016. P. 198 – 206.

12. Ranganatha R., Kumar V., Anil Nandi S., et al. Multi-stage heat treatment of aluminum alloy AA7049 / Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. DOI: 10.1016/S1003-6326(13)62632-1

13. Spigarelli S., Evangelista E., McQueen H. Study of hot workability of a heat treated AA6082 aluminum alloy / Scripta Mater. 2003. N 49. P. 179 – 183. DOI: 10.1016/S1359-6462(03)00206-9

14. Zakir Hussain U. Khan, Chanda A., Ritura Jangid. Fabrication and Hardness Analysis of F-MWCNTs Reinforced Aluminium Nanocomposite / Proc. Eng. 2017. Vol. 173. P. 1611 – 1618. DOI: 10.1016/j.proeng.2016.12.262

15. Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying / J. Alloys Compounds. 2014. Vol. 615. P. 578 – 582. DOI: 10.1016/j.jallcom.2014.01.225

16. Lei Deng, Xinyun Wang, Junsong Jin, et al. Spring back and hardness of aluminum alloy sheet part manufactured by warm forming process using non-isothermal dies / Proc. Eng. 2017. Vol. 207. P. 2388 – 2393. DOI: 10.1016/j.proeng.2017.10.1013

17. Tiryakioğlu M., Robinson J., Salazar-Guapuriche M., et al. Hardness-strength relationships in the aluminum alloy 7010 / Mater. Sci. Eng. A. 2015. Vol. 631. P. 196 – 200. DOI: 10.1016/j.msea.2015.02.049

18. Surya K., Rao S., Viswanath Allamraju K. Effect on Micro-Hardness and Residual Stress in CNC Turning of Aluminium 7075 Alloy / Mater. Today Proc. 2017. Vol. 4. Part A. P. 975 – 981. DOI: 10.1016/j.matpr.2017.01.109

19. Sumesh Narayan, Ananthana Rayanan, Rajeshkannan. Hardness, tensile and impact behaviour of hot forged aluminium metal matrix composites / J. Mater. Res. Technol. 2017. N 6. P. 213 – 219. DOI: 10.1016/j.jmrt.2016.09.006

20. Kawasaki M., Saleh Alhajeri N., Cheng Xu, et al. The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion / Mater. Sci. Eng. A. 529.2011. P. 345 – 351. DOI: 10.1007/s10853-006-0899-5

21. Samuel A. M., Alkahtani S. A., Doty H. W., Samuel F. H. Role of Zr and Sc addition in controlling the microstructure and tensile properties of aluminum, copper based alloys / Mater. Design. 2015. Vol. 88. P. 1134 – 1144. DOI: 10.1016/j.matdes.2015.09.090

22. Emad M. E., Nada H. A., Besisa A. A. Aluminum titanate based ceramics from aluminum sludge waste / Ceram. Int. 2017. Vol. 43. Issue 13. P. 10277 – 10287.

23. Hong Hue D., Tran V., Nguyen V., et al. High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: A molecular dynamics study / Vacuum. 2022. Vol. 201. P. 111104. DOI: 10.1016/j.vacuum.2022.111104

24. Rokhlin L. L., Bochvar N. R., Leonova N. P., Sukhanov A. V. The Effect of Additional Alloying with Sc and Sc + Zr on the Strength Properties of Al-Mg2Si Alloys / Industr. Lab. Diagn. Mater. 2015. Vol. 81. N 5 [in Russian].

25. Petrova E., Dresvyannikov A., Galiullina N., Akhmadi Daryakenari M. Measurements of the Size of Solid Oxide Particles by laser diffraction: Case Sudy of Aluminum Oxide / Industr. Lab. Diagn. Mater. 2015. Vol. 81. N 8 [in Russian].

26. Sbitneva S. V., Alexeev A. A., Kolobnev N. I. Determination of the Characteristics of the Crystal Structure of the g-type Phases in Al-Mg-Si-Cu Alloys using Dark Field Image Defocusing Method / Industr. Lab. Diagn. Mater. 2016. Vol. 82. N 12 [in Russian].

27. Lombardi A., Sediako D., Ravindran C., Barati M. Analysis of precipitation, dissolution and incipient melting of Al2Cu in B206 Al alloy using in-situ neutron diffraction / J. Alloys Compounds. 2019. Vol. 784. P. 1017 – 1025. DOI: 10.1016/j.jallcom.2019.01.104

28. Biwan Xu, Winnefeld F., Bin Ma, Rentsch D., Lothenbach B. Influence of aluminum sulfate on properties and hydration of magnesium potassium phosphate / Cement Concrete Res. 2022. Vol. 156. DOI: 10.1016/j.cemconres.2022.106788

29. Pragathi P., Elansezhian R. Studies on microstructural and mechanical properties of (Nano SiC + Waste Spent catalyst) reinforced aluminum matrix composites, materials today communication / Mater. Today Comm. 2022. Vol. 30. DOI: 10.1016/j.cemconres.2022.103204

30. Carvalho A. L., Renaudin L. B., Zara A. J., Martins J. P. Microstructure analysis of 7050 aluminum alloy processed by multistage aging treatments / J. Alloys Compounds. 2022. Vol. 907. DOI: 10.1016/j.cemconres.2022.164400


Рецензия

Для цитирования:


Younes R., Bournane М., Idir А., Bouklouche I., Bradai М.А., Sadeddine А. Influence of the iron additive on the microstructural behavior of an aluminum-copper foundry alloy B206. Заводская лаборатория. Диагностика материалов. 2023;89(9):48-52. https://doi.org/10.26896/1028-6861-2023-89-9-48-52

For citation:


Younes R., Bournane M., Idir A., Bouklouche I., Bradai M.A., Sadeddine A. Influence of the iron additive on the microstructural behavior of an aluminum-copper foundry alloy B206. Industrial laboratory. Diagnostics of materials. 2023;89(9):48-52. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-9-48-52

Просмотров: 291


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)