Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Mathematical methods in studying temperature-time conditions of the friction surfacing in the manufacture of functionally organized steel-aluminum compositions

https://doi.org/10.26896/1028-6861-2023-89-9-82-90

Abstract

A mathematical model for studying temperature and time conditions of the process of friction surfacing in the manufacture of functionally organized steel-aluminum compositions has been developed and validated. Bars made of pure aluminum grade ER1100 were used as the consumable rod material during friction surfacing. The substrate in the form of a rectangular plate was made of high-quality steel 20. The geometric model of the object when modeling the process of friction surfacing in the ANSYS 2021R2 software package was specified in the form of a rod and a substrate. The initial data for calculating temperature-time conditions of the friction surfacing process are: geometric parameters of the simulation object; characteristics of thermal loads of the heating source which depend on the technological parameters of the surfacing mode (the speed of axial rotation of the rod, axial pressure, boundary conditions of the simulation object for the temperature problem), and auxiliary parameters that determine the order of calculations. The thermal power arising at the point of physical contact between the rotating consumable rod and the substrate was considered a parameter of the source thermal load. The calculation of heat propagation for the friction surfacing process was carried out according to a scheme with a normally circular source located on the substrate surface. The calculation scheme directly reflects the main feature of the friction surfacing process: the introduction of heat due to friction between the rotating consumable rod and the substrate. It is shown that taking into account the boundary conditions and geometric features of the 3D model provide a satisfactory convergence of developed mathematical model and ensure the uncertainty of no more than 5 % in determining the heating temperature of the substrate when forming functional aluminum coatings, as well as composite materials on their base when surfacing them on the surface of steel substrates.

About the Authors

V. D. Zaharchenko
Moscow State Technical University
Russian Federation

Vladislav D. Zaharchenko

5, 2-ya Baumanskaya, Moscow, 105005



R. S. Mikheev
Moscow State Technical University
Russian Federation

Roman S. Mikheev

5, 2-ya Baumanskaya, Moscow, 105005



I. E. Kalashnikov
Moscow State Technical University; Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Igor E. Kalashnikov

5, 2-ya Baumanskaya, Moscow, 105005,

49, Leninskii prospekt, Moscow, 119334



References

1. Gandra J., Krohn H., Miranda R. M., et al. Friction surfacing — A review / Journal of Materials Processing Technology. 2014. Vol. 214. P. 1062 – 1093. DOI: 10.1016/j.jmatprotec.2013.12.008

2. Badheka K., Badheka V. Friction surfacing of aluminium on steel: An experimental approach / Materials Today: Processing. 2017. Vol. 4. P. 9937 – 9941. DOI: 10.1016/j.matpr.2017.06.297

3. Sekhar S. R., Raju M., Govardhan D., et al. Optimization of friction surfaced deposits of aluminium alloy 6068 over low carbon steel / Materials Today: Proceedings. 2022. Vol. 62. P. 4480 – 4486. DOI: 10.1016/j.matpr.2022.04.939

4. Mikheev R. S., Kalashnikov I. E., Bolotova L. K., Kolmakov A. G. Research of the intermetallics formation mechanism during the synthesis of functionally graded layered steel-aluminum compositions / IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 848. N 012056. P. 1 – 7. DOI: 10.1088/1757-899X/848/1/012056

5. Carvalho G. H., Galvao I., Mendes R., Leal R. M. Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer / Materials Characterization. 2019. Vol. 155. P. 109819. DOI: 10.1016/j.matchar.2019.109819

6. Kaur J., Mangla V., Singh J., et al. Cladding of stainless steel (SS304) on aluminium alloy (AA1100) by explosive welding / Materials Today: Processing. 2018. Vol. 5. Issue 9. P. 19136 – 19139. DOI: 10.1016/j.matpr.2018.06.267

7. Ha D. W., Jeon G. W., Shin J. S., Jeong C. Y. Mechanical properties of steel-aluminum multi-materials using a structural adhesive / Materials Today: Communications. 2020. Vol. 25. P. 101552. DOI: 10.1016/j.mtcomm.2020.101552

8. Liu J., Wu B., Wang Z., et al. Microstructure and mechanical properties of aluminum-steel dissimilar metal welded using arc and friction stir hybrid welding / Materials and Design. 2022. Vol. 225. P. 11520. DOI: 10.1016/j.matdes.2022.111520

9. Mikheev R. S., Kalashnikov I. E., Bykov P. A. Investigation of the diffusion zone formation mechanisms during the production of functional steel-aluminium compositions by arc processes / Materials Science Forum. 2022. Vol. 1052. P. 14 – 20. DOI: 10.4028/p-1k2d4m

10. Ibragim A. B., Al-Badour F. A., Adesina A. Y., Merah N. Effect of process parameters on microstructural and mechanical properties of friction stir diffusion cladded ASTM A516-70 steel using 5052 Al alloy / Journal of Manufacturing Processes. 2018. Vol. 34. P. 451 – 462. DOI: 10.1016/j.jmapro.2018.06.020

11. Sahoo D. K., Mohanty B. S., Pradeep A. M. V., John A. D. An experimental study on friction surfaced coating of aluminium 6063 over AISI 316 stainless steel substrate / Materials Today: Proceedings. 2021. Vol. 40. P. 510 – 518. DOI: 10.1016/j.matpr.2020.03.251

12. Kallien Z., Klusemann B. Combined experimental-numerical analysis of the temperature evolution and distribution during friction surfacing / Surface and coatings technology. 2022. Vol. 437. P. 12850. DOI: 10.1016/j.surfcoat.2022.128350

13. Seidi E., Miller S. F. A novel approach to friction surfacing: experimental analysis of deposition from radial surface of a consumable tool / Coatings. 2020. Vol. 10. P. 1016 – 1033. DOI: 10.3390/coatings10111016

14. Kallien Z., Rath L., Roos A., Klusemann B. Experimentally established correlation of friction surfacing process temperature and deposit geometry / Surface and Coatings Technology. 2020. Vol. 397. P. 126040. DOI: 10.1016/j.surfcoat.2020.126040

15. Pirhayati P., Aval H. J. Phase-field microstructure simulation during aluminum alloy friction surfacing / Surface and Coating Technology. 2020. Vol. 402. P. 126496. DOI: 10.1016/j.surfcoat.2020.126496

16. Bararpour S. M., Aval H. J., Jamaati R. Modeling and experimental investigation on friction surfacing of aluminum alloys / Journal of Alloys and Compounds. 2019. Vol. 805. P. 57 – 68. DOI: 10.1016/j.jallcom.2019.07.010

17. Zhang S., Chen G., Liu Q., et al. Numerical analysis and analytical modeling of the spatial distribution of heat flux during friction stir welding / Journal of Manufacturing Processes. 2018. Vol. 33. P. 245 – 255. DOI: 10.1016/j.jmapro.2018.05.021

18. Anand R. S., Prakash P., Jha S. K., Singh A. K. Numerical investigations of effect of input process parameters on heat generation in friction stir welding / Materials Today: Proceedings. 2020. Vol. 33. P. 5354 – 5361. DOI: 10.1016/j.matpr.2020.03.113

19. Logesh M., Kumar D. V., Shankaranarayana R., et al. A numerical analysis of friction stir welded joint using FEA / Materials Today: Proceedings. 2022. Vol. 62. P. 2362 – 2369. DOI: 10.1016/j.matpr.2022.04.850

20. Mikheev R. S., Kalashnikov I. E. Using mathematical methods for analysis of temperature — time conditions of arc surfacing upon manufacturing of steel-aluminum compositions / Inorganic Materials. 2022. Vol. 58. N 15. P. 1594 – 1603. DOI: 10.1134/S0020168522150092


Review

For citations:


Zaharchenko V.D., Mikheev R.S., Kalashnikov I.E. Mathematical methods in studying temperature-time conditions of the friction surfacing in the manufacture of functionally organized steel-aluminum compositions. Industrial laboratory. Diagnostics of materials. 2023;89(9):82-90. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-9-82-90

Views: 282


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)