Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of the optimal shape of permanent magnets of a given volume providing maximum strength of their magnetic coupling

https://doi.org/10.26896/1028-6861-2023-89-10-34-39

Abstract

The ponderomotive force of the adhesion of two permanent magnets depends on their shape. We present the results of determining the optimal shape of ellipsoidal magnets providing maximum magnetic adhesion between them. The interaction of two halves of a magnet, which is an ellipsoid of revolution, and a magnet in the form of a long rod with an elliptical cross section, is analyzed. Analytical formulas for the cohesion forces in these cases are obtained. For a fixed mass or volume of magnets, the problem of optimizing the adhesion force is solved and a geometric shape which provide the maximum adhesion force is determined. It is shown that in the case of a magnet in the form of an ellipsoid of revolution, the maximum adhesion force of its halves (ignoring the magnetic tension on the side surfaces) is achieved at an eccentricity of 0.625958. The magnitude of the maximum adhesion force exceeds the adhesion force of the halves of a uniformly magnetized spherical magnet of the same volume by 1.7%. In this case, the adhesion area of the ellipsoidal magnet will be less than the adhesion area of the spherical magnet by 28%. The optimal form of a bar magnet with an elliptical section with the maximum force of adhesion of its halves at a fixed volume of the magnet is determined. A formula is derived for the ponderomotive magnetostatic force of the interaction between the halves of a bar magnet with an elliptical section and the maximum force of interaction. Numerical estimates for a sintered NdFeB bar magnet showed that the ponderomotive force of interaction with a cross-sectional radius of 5 cm can reach 2 tons per 1 m of length. The results obtained can be used to improve the efficiency of devices based on permanent magnets.

About the Authors

O. P. Polyakov
M. V. Lomonosov Moscow State University; V. A. Trapeznikov Institute of Control Sciences
Russian Federation

Oleg P. Polyakov

Faculty of Physics

1, str. 2, Leninskie gory, Moscow, 119991; 
65, Profsoyuznaya ul., Moscow, 117997



P. A. Polyakov
M. V. Lomonosov Moscow State University
Russian Federation

Petr A. Polyakov

Faculty of Physics

1, str. 2, Leninskie gory, Moscow, 119991



References

1. Biao Xiang, Zhikai Liu, Hongzhang Feng, Tong Wen. Force analysis and measurement of permanent magnet biased AMB and PMB in hybrid magnetically suspended flywheel / Measurement. 2023. Vol. 206. N 112336. P. 1 – 13. DOI: 10.1016/j.measurement.2022.112336

2. Suvorov V. A., Mohammad R. B., Sorokin P. A., et al. Mathematical model and experimental study of a magnet coupling with a stop / SN Applied Sciences. 2022. Vol. 4. Art. 286. DOI: 10.1007/s42452-022-05175-w

3. Berezney J. P., Valentine M. T. A compact rotary magnetic tweezers device for dynamic material analysis / Rev. Sci. Instrum. 2022. Vol. 93. N 093701. DOI: 10.1063/5.0090199

4. Yanxing Cheng, Jun Zheng, Huan Huang, Zigang Deng. A reconstructed three-dimensional HTS bulk electromagnetic model considering Jc spatial inhomogeneity and its implementation in a bulks’ combination system / Supercond. Sci. Tecnol. 2021. Vol. 34. N 125017. P. 1 – 15. DOI: 10.1088/1361-6668/ac336b

5. Makarichev Yu. A., Ivannikov Yu. N., Rattsev Ya. A., Polyansky E. A. Combined magnetic suspension / Vestn. SGTU. 2020. Vol. 28. N 4. P. 142 – 154 [in Russian].

6. Voronkov V. S., Malkin S. A. Simple cost-efficient magnetic suspension / J. Tech. Phys. 2011. Vol. 56. P. 1675 – 1678. DOI: 10.1134/S1063784211110284

7. Park Y.-S. Comparative Performance Evaluation of Wound Rotor Synchronous Motor and Interior Permanent Magnet Synchronous Motor with Experimental Verification / Adv. Electr. Computer Eng. 2022. Vol. 22. N 2. P. 37 – 44. DOI: 10.4316/AECE.2022.02005

8. Gandzha S. A., Sogrin A. I., Kiessh I. E. The Comparative Analysis of Permanent Magnet Electric Machines with Integer and Fractional Number of Slots per Pole and Phase / Procedia Eng. 2015. Vol. 129. P. 408 – 414. DOI: 10.1016/j.proeng.2015.12.137

9. Naoya Soda, Naoki Hayashi, Masato Enokizono. Analytical Study on Core Loss Reduction of Segmented Stator Core Motor in Consideration of Rolling Direction of Nonoriented Electrical Steel Sheet / IEEE Trans. Industry Appl. 2021. Vol. 57. N 5. P. 4745 – 4753. DOI: 10.1109/TIA.2021.3091947

10. Feng Y., Zheng J., Deng Z., et al. Double-layer quasi-Halbach guideway with NdFeB and ferrite materials for HTS Maglev / J. Alloys Compounds. 2022. Vol. 929. N 167342. P. 1 – 11. DOI: 10.1016/j.jallcom.2022.167342

11. Kumar D., Sisodiya M., Mandal D., Bajpai V. Maglev micro-EDM: Feasibility and performance on Inconel 625 / CIRP J. Manufact. Sci. Technol. 2023. Vol. 40. P. 155 – 166. DOI: 10.1016/j.cirpj.2022.11.012

12. Zheng J., Bao Y., Lei W., et al. Compound effect of adjacent HTS bulks’ anisotropy and inhomogeneity on maglev performances in an applied magnetic field / Mater. Today Comm. 2023. Vol. 34. N 105122. P. 1 – 7. DOI: 10.1016/j.mtcomm.2022.105122

13. Xu Y., Zhao Z., Yin S., et al. Real-Time Performance Optimization of Electromagnetic Levitation Systems and the Experimental Validation. / IEEE Trans. Industry Electr. 2023. Vol. 70. N 3. P. 3035 – 3044. DOI: 10.1109/TIE.2022.3167154

14. Andreev E. N., Arslanova D. N., Akhmetzyanova E. V., et al. Combined Electromagnetic Suspensions with Reduced Energy Consumption for Levitation Vehicles / J. Tech. Phys. 2019. Vol. 64. P. 1060 – 1065. DOI: 10.1134/S1063784219070041

15. Andreeva N. V., Filimonov A. V., Rudskoy A. I., et al. A study of nanostructure magnetosolid Nd – Ho – Fe – Co – B materials via atomic force microscopy and magnetic force microscopy / Phys. Solid State. 2016. Vol. 58. P. 1862 – 1869. DOI: 10.1134/S1063783416090079

16. Kostishin V. G., Shakirzyanov R. I., Isaev I. M., Salogub D. V. Study of radar absorbing characteristics of polymer composites with ferrite fillers / Zavod. Lab. Diagn. Mater. 2022. Vol. 88. N 6. P. 31 – 45 [in Russian]. DOI: 10.26896/1028-6861-2022-88-6-31-45

17. Kostishin V. G., Vergazov R. M., Menshova S. B., et al. The effect of alloying additives on the magnetic permeability and permittivity of ferrite spinel / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 1. P. 30 – 34 [in Russian]. DOI: 10.26896/1028-6861-2021-87-1-30-34

18. Sandomirsky S. G. Physical methods of research and monitoring / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1(I). P. 35 – 44 [in Russian]. DOI: 10.26896/1028-6861-2019-85-1-I-35-44

19. Polyakov O. P., Polyakov P. A. A permanent spherical magnet with inhomogeneous magnetization / Izv. RAN. 2017. Vol. 81. P. 993 – 995 [in Russian]. DOI: 10.3103/S1062873817080238

20. Wu C., Li G., Wang D., Xu J. An efficient analytical model and experiments of 3D electromagnetic force of permanent magnet electrodynamic suspension system / J. Appl. Phys. 2022. Vol. 132. N 175001. P. 1 – 10. DOI: 10.1063/5.0123786

21. Zhou D., Zhu L., Liu J., et al. Vertical Magnetic Field Distribution Characteristics of Triple-Peak Halbach Array PMG and Its Engineering Application in HTS Maglev Train / IEEE Trans. Appl. Superconduct. 2022. Vol. 32. N 9. P. 3602908. DOI: 10.1109/TASC.2022.3213995

22. Pyatakov M. A., Akimov M. L., Polyakov P. A. Interaction between an Inhomogeneous Permanent Magnet Consisting of a Lattice of Hard Magnetic Strips and a Massive Ferromagnetic Medium / Izv. RAN. 2021. Vol. 85. P. 1230 – 1234 [in Russian]. DOI: 10.3103/S1062873821110319

23. Pyatakov M. A., Polyakov P. A., Rusakova N. E. Study on Interaction between Ferromagnetics and Calculating the Degree of Interaction / Izv. RAN. 2020. Vol. 84. P. 593 – 595 [in Russian]. DOI: 10.3103/S106287382005024X

24. Landau L. D., Lifshits E. M. Theoretical physics. — Moscow: Nauka, 1982. — 620 p. [in Russian].

25. Tamm I. E. Fundamentals of the Theory of Electricity. — Moscow: Mir, 1979. — 684 p. [in Russian].


Review

For citations:


Polyakov O.P., Polyakov P.A. Determination of the optimal shape of permanent magnets of a given volume providing maximum strength of their magnetic coupling. Industrial laboratory. Diagnostics of materials. 2023;89(10):34-39. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-10-34-39

Views: 362


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)