Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Specified criterion for delamination upon bending of a composite beam

https://doi.org/10.26896/1028-6861-2023-89-10-63-73

Abstract

The interlayer strength in polymer fiber composites is characterized mostly by the strength of the matrix, which is much lower than fiber strength. For this reason, the analysis of fracture occurred through delamination is extremely important for assessing the operability of composite structural elements. When designing critical structures, it is necessary to know the interlayer shear strength, for which the method of bending a short beam has been standardized. The shear stresses and the interlayer shear strength in bending theory are traditionally assumed to be independent of the length and width of the beam. However, a large number of experimental studies prove the opposite fact that the geometry of the specimen affects the value of critical stresses. The linear fracture criterion proposed by the authors allows explanation and quantitatively description of the interlayer shear strength dependence on the geometry of the specimen. The influence of the heterogeneity of interlayer shear stresses across the beam on the critical stresses is analyzed. A strict solution of the bending problem showed that taking into account the specified shear stress distribution gives an insignificant correction to the determined value of the interlayer strength, which makes it possible to use a simplest parabolic distribution in height. The results of the analysis are confirmed in three-point bending tests of short composite beams of different widths. The results of fatigue tests of short beams made of carbon fiber reinforced plastic are analyzed. The relationship between tensile fatigue curves of polymer fiber composites and the fatigue curves obtained in cyclic three-point bending test of short beams has been revealed using the proposed linear fracture criterion. The estimation of the strength scale effect on the basis of the energy criterion of delamination with and without taking into account the refined distribution of interlayer shear stresses is presented.

About the Authors

A. N. Polilov
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Russian Federation

Alexander N. Polilov 

4, Malyi Kharitonyevsky Per., Moscow, 101000



D. D. Vlasov
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Russian Federation

Danila D. Vlasov

4, Malyi Kharitonyevsky Per., Moscow, 101000



N. A. Tatus’
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Russian Federation

Nikolai A. Tatus’

4, Malyi Kharitonyevsky Per., Moscow, 101000

 



References

1. Bazli M., Heitzmann M., Villacorta Hernandez B. Durability of fibre-reinforced polymer-wood composite members: An overview / Composite Structures. 2022. 295. DOI: 10.1016/j.compstruct.2022.115827

2. Skoczylas J., Samborski S., Kłonica M. A multilateral study on the FRP composite’s matrix strength and damage growth resistance / Composite Structures. 2021. 263. DOI: 10.1016/j.compstruct.2021.113752

3. Hodgkinson J. M. Mechanical Testing of Advanced Fibre Composites. — Woodhead Publishing, 2010. — 378 p.

4. Kelly A., Zweben C. H. Comprehensive composite materials. — New York: Elsevier Science, 2000. — 810 p.

5. Polilov A. N. Experimental Mechanics of Composites. Textbook for Technical Universities. 2nd edition. — Moscow: MGTU im. N. É. Baumana, 2018. — 375 p. [in Russian].

6. Sieberer S., Savandaiah C., Leßlhumer J., Schagerl M. Shear property measurement of additively manufactured continuous fibre reinforced plastics by in-plane torsion testing / Additive Manufacturing. 2022. 55. DOI: 10.1016/j.addma.2022.102805

7. Peng Z., Wang X., Ding L., Wu Z. Integrative tensile prediction and parametric analysis of unidirectional carbon/basalt hybrid fiber reinforced polymer composites by bundle-based modeling / Materials and Design. 2022. 218. DOI: 10.1016/j.matdes.2022.110697

8. Gao D., Zhang Y., Wen F., et al. Transverse shear properties of fiber reinforced polymer bars with different reinforced phases / Journal of Composite Materials. 2022. 55(27). P. 4063 – 4078. DOI: 10.1177/00219983211031630

9. Firsanov V. V. Bending of composite beams considering shear deformation / Izv. Tul. Gos. Univ. Tekhn. Nauki. 2018. N 4. P. 168 – 174 [in Russian].

10. Dudarkov Yu. I., Limonin M. V. Determination of the transverse shear stress in layered composites / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 2. P. 44 – 53 [in Russian]. DOI: 10.26896/1028-6861-2020-86-2-44-53

11. Huang S., Yan L., Bachtiar E. V., et al. Bond behaviour between flax-glass hybrid fibre reinforced epoxy composite and laminated veneer lumber joints / Journal of Building Engineering. 2022. 50. DOI: 10.1016/j.jobe.2022.104207

12. Ascione F., Napoli A., Realfonzo R. Interface bond between FRP systems and substrate: Analytical modeling / Composite Structures. 2021. 257. DOI: 10.1016/j.compstruct.2020.112942

13. Cagnacci E., Orlando M., Salvatori L., Spinelli P. Four-point bending tests on laminated glass beams reinforced with FRP bars adhesively bonded to the glass / Glass Structures and Engineering. 2022. 6(2). P. 211 – 232. DOI: 10.1007/s40940-021-00147-9

14. Lobanov D. S., Pan’kov A. M. Effect of Elevated Temperatures on the Fatigue Life of Structural Fiberglass in Interlaminar Shear Testing / Aérokosm. Tekhn. Vysok. Tekhnol. Innov. 2020. N 2. P. 62 – 65 [in Russian].

15. Rabotnov Yu. N. Mechanics of a Deformable Solid Body. 2nd edition. — Moscow: Nauka, 1988. — 712 p. [in Russian].

16. Polilov A. N., Khokhlov V. K. Calculation Criterion for the Strength of Composite Beams in Bending / Mashinovedenie. 1979. N 2. P. 53 – 57 [in Russian].

17. Samsonov V. A., Shlyakhovoi V. S. Strength calculation of short beams during their transverse bending / Persp. Nauch.-Tekhnol. Razv. Agroprom. Kompl. Rossii. 2019. P. 410 – 413 [in Russian].

18. Zhigun V. I., Plume E. Z., Mujzhnieks K. I., Krasnov L. L. Universal Methods for Determining the Shear Modules of Composite Materials / Mekh. Kompoz. Mater. Konstr. 2020. Vol. 26. N 3. P. 313 – 326 [in Russian]. DOI: 10.33113/mkmk.ras.2020.26.03.313_326.02

19. Polilov A. N., Vlasov D. D., Tatus’ N. A. Specified method for estimating the interlayer shear modulus by correcting the deflection of polymer composite specimens / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 3. P. 57 – 69. DOI: 10.26896/1028-6861-2023-89-3-57-69

20. Lekhnitsky S. G. Theory of Elasticity of an Anisotropic Body. Moscow: Nauka, 1977. — 416 p. [in Russian].

21. Rabotnov Yu. N., Kogaev V. P., Polilov A. N., Strekalov V. B. Criterion of interlayer strength of carbon fiber reinforced plastics under cyclic loads / Mekh. Kompoz. Mater. 1982. N 6. P. 983 – 986 [in Russian].


Review

For citations:


Polilov A.N., Vlasov D.D., Tatus’ N.A. Specified criterion for delamination upon bending of a composite beam. Industrial laboratory. Diagnostics of materials. 2023;89(10):63-73. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-10-63-73

Views: 352


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)