Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the effect of the morphology of initial powders on the structural and dimensional characteristics of SiC-based porous ceramic materials

https://doi.org/10.26896/1028-6861-2023-89-11-44-51

Abstract

The realization of the necessary energy-efficient technological solutions for the production of highly porous SiC-ceramic materials requires appropriate research. The results of developing energy-efficient one-step methods for the synthesis of porous SiC-based ceramics and studying the characteristics of the obtained ceramics are presented. The effect of the morphology of initial powders on the synthesized product is considered. Ultrafine silicon carbide powders of two types, identical in characteristic particle size, but quite different in the surface morphology, were used as fillers in the synthesis of experimental samples of porous ceramics. The first one was obtained by the traditional furnace method (SiCf), the second one was synthesized by the technology of self-propagating high-temperature synthesis (SiCshs). It is shown that the particle morphology of initial powder components determines the structural parameters and characteristics of synthesized porous ceramics. The pore space parameters (average pore size, specific surface area, equivalent hydraulic diameter, permeability, etc.) can vary significantly. Porous ceramic materials synthesized on the basis of SiCf have an open porosity of 47%, high liquid permeability (up to 2 mDarcy), overwhelming dominance of α-SiC phase, and a narrow pore distribution with an average pore size of about 1 μm. High open porosity (more than 58 %), highly developed nanostructured pore space surface with an area of more than 12 m2/g, and wider pore size distribution (average pore size — 140 nm) are observed in porous ceramic materials based on SiCshs. The obtained results can be used to improve energy-efficient synthesis technologies and methods for predicting the properties of highly porous SiC-based ceramic materials. This will make it possible to create highly porous SiC ceramics within a priory predicted limits of effective applicability for the processes of ultrafiltration or catalysis.

About the Authors

R. D. Kapustin
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Roman D. Kapustin

8, ul. Akad. Osipyana, Chernogolovka, Moscow obl., 142432



A. O. Kirillov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Andrey O. Kirillov

8, ul. Akad. Osipyana, Chernogolovka, Moscow obl., 142432



V. I. Uvarov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Valery I. Uvarov

8, ul. Akad. Osipyana, Chernogolovka, Moscow obl., 142432



V. V. Zakorzhevsky
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Vladimir V. Zakorzhevsky

8, ul. Akad. Osipyana, Chernogolovka, Moscow obl., 142432



References

1. Khodaei M., Yaghobizadeh O., Alhosseini S., et al. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review / J. Eur. Ceram. Soc. 2019. Vol. 39. P. 2215 – 2231. DOI: 10.1016/j.jeurceramsoc.2019.02.042

2. Chainikova A. S., Sorokin O. Yu., Kuznetsov B. Yu., et al. Study of reaction-bonded silicon carbide samples using visual-optical and radiographic methods of nondestructive control / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 6. P. 46 – 51 [in Russian]. DOI: 10.26896/1028-6861-2022-88-6-46-51

3. Hotza D., Luccio M., Wilhelm M., et al. Silicon carbide filters and porous membranes: a review of processing, properties, performance and application / J. Membr. Sci. 2020. Vol. 610. P. 118193. DOI: 10.1016/j.memsci.2020.118193

4. Chen J., Zhong Z., Xia Y., et al. Recent developments on catalytic membrane for gas cleaning / Chin. J. Chem. Eng. 2019. Vol. 27. P. 1391 – 1402. DOI: 10.1016/j.cjche.2019.02.001

5. Wei W., Zhang W., Jiang Q., et al. Preparation of non-oxide SiC membrane for gas purification by spray coating / J. Membr. Sci. 2017. Vol. 540. P. 381 – 390. DOI: 10.1016/j.memsci.2017.06.076

6. Chen M., Shang R., Sberna P., et al. Highly permeable silicon carbide-alumina ultrafiltration membranes for oil-in-water filtration produced with low-pressure chemical vapor deposition / Separ. Purif. Technol. 2020. Vol. 253. P. 117496. DOI: 10.1016/j.seppur.2020.117496

7. Li Y., Yang X., Liu D., et al. Permeability of the porous Al2O3 ceramic with bimodal pore size distribution / Ceram. Int. 2019. Vol. 45. P. 5952 – 5957. DOI: 10.1016/j.ceramint.2018.12.064

8. Geltmeyer J., Teixido H., Meire M., et al. TiO2 functionalized nanofibrous membranes for removal of organic (micro)pollutants from water / Separ. Purif. Technol. 2017. Vol. 179. P. 533 – 541. DOI: 10.1016/j.seppur.2017.02.037

9. Li D., Yao J., Liu B., et al. Preparation and characterization of surface rafting polymer of ZrO2 membrane and ZrO2 powder / Appl. Surf. Sci. 2019. Vol. 471. P. 394 – 402. DOI: 10.1016/j.seppur.2017.02.037

10. Lee J., Zhang Z., Baek S., et al. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced under water stability and regenerative-drag reduction capability / Sci. Rep. 2016. Vol. 79. No. 3. P. 365 – 374. DOI: 10.1038/srep24653

11. Zsirai T., Al-Jaml A., Qiblawey H., et al. Ceramic membrane filtration of produced water: impact of membrane module / Separ. Purif. Technol. 2016. Vol. 165. P. 214 – 221. DOI: 10.1016/j.seppur.2016.04.001

12. Hofs B., Ogier J., Vries D., et al. Comparison of ceramic and polymeric membrane permeability and fouling using surface water / Separ. Purif. Technol. 2011. Vol. 79. No. 3. P. 365 – 374. DOI: 10.1016/j.seppur.2011.03.025

13. Khodaei M., Yaghobizadeh O., Baharvandi H., et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites / Int. J. Refract. Met. H. 2018. Vol. 70. P. 19 – 31. DOI: 10.1016/j.ijrmhm.2017.09.005

14. Kim Y., Min K., Shim J., et al. Formation of porous SiC ceramics via recrystallization / J. Eur. Ceram. Soc. 2012. Vol. 32. P. 3611 – 3615. DOI: 10.1016/j.jeurceramsoc.2012.04.044

15. Zhang J., Zhou X., Zhi Q., et al. Microstructure and mechanical properties of porous SiC ceramics by carbothermal reduction and subsequent recrystallization sintering / J. Asian Ceram. Soc. 2020. Vol. 8. No. 2. P. 255 – 264. DOI: 10.1080/21870764.2020.1728045

16. Jin Y. J., Kim Y. W. Low temperature processing of highly porous silicon carbide ceramics with improved flexural strength / J. Mater. Sci. 2010. Vol. 45. P. 282 – 285. DOI: 10.1007/s10853-009-3993-7

17. Fitzgerald T., Michaud V., Mortensen A. Processing of microcellular SiC foams / J. Mater. Sci. 1995. Vol. 30(4). P. 1037 – 1045. DOI: 10.1007/BF01178442

18. Yoon B. H., Lee E. J., Kim H. E. Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution / J. Am. Ceram. Soc. 2007. Vol. 90. No. 6. P. 1753 – 1759. DOI: 10.1111/j.1551-2916.2007.01703.x

19. Negita K. Effective sintering aids for silicon carbide ceramics: reactivities of silicon carbide with various additives / J. Am. Ceram. Soc. 1986. Vol. 69. No. 12. P. 308 – 310. DOI: 10.1111/j.1551-2916.1986.tb07398.x

20. Uvarov V. I., Kapustin R. D., Kirillov A. O., et al. The Effect of Correlation between Starting Reagent Size/Ratio and Structural Parameters on the Permeability of Porous Al2O3 Ceramics / Int. J. Self-Propag. High-Temp. Synth. 2022. Vol. 31. P. 220 – 229. DOI: 10.3103/S1061386222040124

21. Uvarov V. I., Kapustin R. D., Kirillov A. O., et al. Development of a porous catalytic converter for dehydrogenation of cumene to α-methylstyrene / Refractories and Industrial Ceramics. 2020. Vol. 61. No. 4. P. 355 – 359. DOI: 10.1007/s11148-020-00486-0

22. Uvarov V. I., Kapustin R. D., Kirillov A. O., et al. Influence of structural-dimensional factor and catalytically active additives of Fe2O3/Cr2O3 in α-Al2O3-based membranes on hydrocarbon dehydrogenation / J. As. Ceram. Soc. 2021. Vol. 9. No. 3. P. 806 – 814. DOI: 10.1080/21870764.2021.1920133

23. Belyakov A., Zo A., Popova N., et al. Strengthening binders for the porous permeable ceramics with the electro-fused corundum aggregate / New refractories. 2017. Vol. 2. P. 25 – 29 [in Russian]. DOI: 10.17073/1683-4518-2017-2-25-29

24. Luo Z., Han W., Yu X., et al. In-situ reaction bonding to obtain porous SiC membrane supports with excellent mechanical and permeable performance / Ceram. Int. 2019. Vol. 45. P. 9007 – 9016. DOI: 10.1016/j.ceramint.2019.01.234


Review

For citations:


Kapustin R.D., Kirillov A.O., Uvarov V.I., Zakorzhevsky V.V. Study of the effect of the morphology of initial powders on the structural and dimensional characteristics of SiC-based porous ceramic materials. Industrial laboratory. Diagnostics of materials. 2023;89(11):44-51. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-11-44-51

Views: 222


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)