

Study of the electrophysical and magnetic properties of a Dirac 3D semimetal Cd3As2 with nanogranules of MnAs
https://doi.org/10.26896/1028-6861-2023-89-11-52-59
Abstract
We report on the main results of studying the electrical and magnetoresistance (MR) of a composite material consisting of 70 % mol. Dirac semi-metal Cd3As2 and 30 % mol. ferromagnet MnAs at pressures up to 50 GPa in a diamond anvil cell with a «rounded cone-flat» type anvils, as well as magnetization at hydrostatic pressures up to 6 GPa in a toroid-shaped high-pressure cell, both at room temperature and in the temperature range of 180 – 350 K at atmospheric pressure. A mixture of methanol and ethanol in a ratio of 4:1 was used as a pressure transmitting medium. Elemental analysis of Cd3As2 + 30 % mol MnAs composites showed that much of the volume is occupied by the Cd3As2 phase. The proportion of MnAs phase inclusions is less than 5 %. The feature of Cd3As2 + MnAs is the presence of a significant region of non-mixing of the Cd3As2 and MnAs phase melts. A negative MR was revealed with increasing pressure in the entire studied baric zone. The maximum negative MR is observed in the baric zone of 22 – 26 GPa. Further increase in the pressure up to the maximum level result in the appearance of several extrema on the ΔR/R0(P) curve, with negative MR not exceeding 4 %. Upon pressure release from 50 GPa, the baric dependence of ΔR/R0(P) is characterized by an inversion of the MR sign: at pressures around 40 GPa, a negative MR is replaced by a positive MR, and at around 20 GPa, the maximum value of positive MR of ~5.3 % is observed. Signs of the instability of the monoclinic structure of Cd3As2 resulted from its partial decomposition upon decompression were revealed. The results obtained can be used in spintronics when using appropriate composite materials.
About the Authors
L. A. SaypulaevaRussian Federation
Luiza A. Saypulaeva
94, ul. M. Yaragskogo, Makhachkala
N. V. Melnikova
Russian Federation
Nina V. Melnikova
48, ul. Kuibysheva, Yekaterinburg, 620002
M. M. Gadzhialiev
Russian Federation
Magomed M. Gadzhialiev
94, ul. M. Yaragskogo, Makhachkala, 367015
A. V. Tebenkov
Russian Federation
Alexander V. Tebenkov
48, ul. Kuibysheva, Yekaterinburg, 620002
A. N. Babushkin
Russian Federation
Aleksey N. Babushkin
48, ul. Kuibysheva, Yekaterinburg, 620002
V. S. Zakhvalinskii
Russian Federation
Vasiliy S. Zakhvalinskii
4, Leninsky prosp., Moscow, 119991
M. H. Al-Onaizan
Russian Federation
Mohammad H. Al-Onaizan
4, Leninsky prosp., Moscow, 119991
A. I. Ril
Russian Federation
Aleksey I. Ril
31, Leninsky prosp., Moscow, 119991
References
1. Wang Z., Weng H., Wu Q., et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 / Phys. Rev. 2013. Vol. 88. N 12. P. 125427. DOI: 10.1103/PhysRevB.88.125427
2. Borisenko S., Gibson Q., Evtushinsky D., et al. Experimental realization of a three-dimensional Dirac semimetal / Phys. Rev. Lett. 2014. Vol. 113. N 2. P. 027603. DOI: 10.1103/PhysRevLett.113.027603
3. Feng J., Pang Y., Wu D., et al. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points / Phys. Rev. 2015. Vol. 92. N 8. P. 081306. DOI: 10.1103/PhysRevB.92.081306
4. He L., Jia Y., Zhang S., et al. Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2 / Quantum Mater. 2016. Vol. 1. N 1. P. 1 – 5. DOI: 10.1038/npjquantmats.2016.14
5. Zhang S., Wu Q., Schoop L., et al. Breakdown of three-dimensional Dirac semimetal state in pressurized Cd3As2 / Phys. Rev. 2015. Vol. 91. N 16. P. 165133. DOI: 10.1103/PhysRevB.91.165133
6. Arushanov E. K. II3V2 compounds and alloys / Crystal Growth and Charact. 1992. Vol. 25. N 3. P. 131 – 201. DOI: 10.1016/0960-8974(92)90030-T
7. Lu H., Zhang X., Bian Y., Jia S. Topological phase transition in single crystals of (Cd1 – xZnx)3As2 / Sci. Rep. 2017. Vol. 7. N 1. P. 3148. DOI: 10.1038/s41598-017-03559-2
8. Cisowski J. Semimagnetic semiconductors based on II – V compounds / Phys. Stat. Sol. 1997. Vol. 200. N 2. P. 311 – 350.
9. Baibich M., Broto J., Fert A., et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices / Phys. Rev. Lett. 1988. Vol. 61. N 21. P. 2472. DOI: 10.1103/PhysRevLett.61.2472
10. Ril A. I., Marenkin S. F. Cadmium Arsenides: Structure, Synthesis of Bulk and Film Crystals, Magnetic and Electrical Properties (Review) / Russ. J. Inorg. Chem. 2021. Vol. 66. N 14. P. 2005. DOI: 10.1134/S0036023621140059
11. Gribanov I., Zavadsky A., Sivachenko A. Low-Temperature Magnetic Transformations in Orthorhombic Manganese Arsenide / FTN. 1979. Vol. 5. N 10. P. 1219 [in Russian].
12. Spezzani C., Ferrari E., Allaria E., et al. Magnetization and microstructure dynamics in Fe/MnAs/GaAs (001): Fe magnetization reversal by a femtosecond laser pulse / Phys. Rev. Lett. 2014. Vol. 113. N 24. P. 247202. DOI: 10.1103/PhysRevLett.113.247202
13. Hubmann J., Bauer B., Körner H., et al. Epitaxial growth of room-temperature ferromagnetic MnAs segments on GaAs nanowires via sequential crystallization / Nano Let. 2016. Vol. 16. N 2. P. 900. DOI: 10.1021/acs.nanolett.5b03658
14. Novotortsev V. M., Marenkin S. F., Fedorchenko I. V., Kochura A. V. Physicochemical foundations of synthesis of new ferromagnets from chalcopyrites AIIBIVCV2 / Zh. Neorg. Khim. 2010. Vol. 55. N 11. P. 1762 [in Russian]. DOI: 10.1134/S0036023610110136
15. Saypulaeva L. A., Gadzhialiev M. M., Alibekov A. G., et al. Effect of hydrostatic pressures of up to 9 GPa on the galvanomagnetic properties of Cd3As2 – MnAs (20 % mol. MnAs) alloy in a transverse magnetic field / Inorg. Mater. 2019. Vol. 55. N 9. P. 873 – 878. DOI: 10.1134/S0020168519090152
16. Alibekov A. G., Mollaev A. Y., Saipullaeva L. A., et al. Hall effect, electrical and magnetic resistance in Cd3As2 + MnAs (30 %) composite at high pressures / Zh. Neorg. Khim. 2017. Vol. 62. N 1. P. 90 – 93 [in Russian]. DOI: 10.7868/S0044457X17010032
17. Alibekov A. G., Mollaev A. Y., Saipullaeva L. A., et al. Magnetotransport effects in granular Cd3As2 + MnAs structures at high pressures / Inorg. Mater. 2016. Vol. 52. N 4. P. 357 – 360. DOI: 10.1134/S0020168516040014
18. Saypulaeva L. A., Gadzhialiev M. M., Alibekov A. G., et al. The effect of high pressure on the electrical and galvanomagnetic properties of the composite Cd3AS2 — 20 % mol. MnAs / Fiz. Tv. Tela. 2020. Vol. 62. N 6. P. 942 – 946 [in Russian]. DOI: 10.1134/S1063783420060256
19. Melnikova N. V., Tebenkov A. V., Sukhanova G. V., et al. Thermoelectric properties of a ferromagnetic semiconductor based on the Dirac semimetal Cd3As2 at high pressure / Fiz. Tv. Tela. 2018. Vol. 60. N 3. P. 494 – 498 [in Russian]. DOI: 10.1134/S1063783418030174
20. Ril A. I., Kochura A. V., Marenkin S. F., et al. Microstructure of crystals of the system Cd3As2 – MnAs / Izv. Yugo-Zapad. Gos. Univ. 2017. Vol. 7. N 2. P. 120 – 134 [in Russian].
21. Vereshchagin L. F., Yakovlev E. N., Vinogradov B. V., et al. Megabar pressure between anvils / High Temp. — High Press. 1974. Vol. 6. N 5. P. 499 – 504.
22. Babushkin A. N., Pilipenko G. I., Gavrilov F. F. The electrical conductivity and thermal electromotive force of lithium hydride and lithium deuteride at 20 – 50 GPa / J. Phys. Condens. Matter. 1993. Vol. 5. N 46. P. 8659. DOI: 10.1088/0953-8984/5/46/005
23. Babushkin A. N. Electrical conductivity and thermal EMF of CsI at high pressures / High Press. Res. 1991. Vol. 6. N 6. P. 349 – 356. DOI: 10.1080/08957959208201042
24. Khvostantsev L. G., Slesarev V. N., Brazhkin V. V. Toroid type high-pressure device: history and prospects / High Press. Res. 2004. Vol. 24. N 3. P. 371 – 383. DOI: 10.1080/08957950412331298761
25. Mollaev A. Y., Saypulaeva L. A., Arslanov R. K., et al. Electrophysical Properties of ZnAs2 and CdAs2 at Hydrostatic Pressure up to 9 GPa / High Press. Res. 2002. Vol. 22. N 1. P. 181 – 184. DOI: 10.1080/08957950211335
26. Arslanov T., Kilanski L., López-Moreno S., et al. Changes in the magnetization hysteresis direction and structure-driven magnetoresistance of a chalcopyrite-based magnetic semiconductor / J. Phys. D. Appl. Phys. 2016. Vol. 49. N 12. P. 125007. DOI: 10.1088/0022-3727/49/12/125007
27. Saypulaeva L., Pirmagomedov Z., Galzhialiev M., et al. Spin -polarized electric current in Cd48.6Mn11.4As40 nanocomposite / Physics of the Solid State. 2021. Vol. 63. N 4. P. 427 – 432. DOI: 10.1134/S1063783421040193
28. Samokhvalov A. A., Evstigneeva S. A., Morchenko A. T., et al. Determination of small magnitudes of magnetostriction in amorphous microwires with an arbitrary type of magnetic anisotropy / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 1(I). P. 62 – 68 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-I-62-68
29. Menyuk N., Kafalas J., Dwight K., Goodenough J. Effects of pressure on the magnetic properties of MnAs / Phys. Rev. 1969. Vol. 177. N 2. P. 942. DOI: 10.1103/PhysRev.177.942
30. Andresen A., Fjellvåg H., Lebech B. Neutron diffraction investigation of MnAs under high pressure / Magn. Mater. 1984. Vol. 43. N 2. P. 158 – 160. DOI: 10.1016/0304-8853(84)90093-3
31. Mattoso N., Eddrief M., Varalda J., et al. Enhancement of critical temperature and phases coexistence mediated by strain in MnAs epilayers grown on GaAs (111) B / Phys. Rev. 2004. Vol. 70. N 11. P. 115324. DOI: 10.1103/PhysRevB.70.115324
32. Kochura A. V., Marenkin S. F., Ril A. I., et al. Growth and Characterization of Cd3As2 + MnAs Composite / J. Nano- Electron. Phys. 2015. Vol. 7. N 4. P. 4079.
33. Liu Y., Tiwari R., Narayan A., et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films / Phys. Rev. 2018. Vol. 97. N 8. P. 085303. DOI: 10.1103/PhysRevB.97.085303
Review
For citations:
Saypulaeva L.A., Melnikova N.V., Gadzhialiev M.M., Tebenkov A.V., Babushkin A.N., Zakhvalinskii V.S., Al-Onaizan M., Ril A.I. Study of the electrophysical and magnetic properties of a Dirac 3D semimetal Cd3As2 with nanogranules of MnAs. Industrial laboratory. Diagnostics of materials. 2023;89(11):52-59. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-11-52-59