Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the electrophysical and magnetic properties of a Dirac 3D semimetal Cd3As2 with nanogranules of MnAs

https://doi.org/10.26896/1028-6861-2023-89-11-52-59

Abstract

We report on the main results of studying the electrical and magnetoresistance (MR) of a composite material consisting of 70 % mol. Dirac semi-metal Cd3As2 and 30 % mol. ferromagnet MnAs at pressures up to 50 GPa in a diamond anvil cell with a «rounded cone-flat» type anvils, as well as magnetization at hydrostatic pressures up to 6 GPa in a toroid-shaped high-pressure cell, both at room temperature and in the temperature range of 180 – 350 K at atmospheric pressure. A mixture of methanol and ethanol in a ratio of 4:1 was used as a pressure transmitting medium. Elemental analysis of Cd3As2 + 30 % mol MnAs composites showed that much of the volume is occupied by the Cd3As2 phase. The proportion of MnAs phase inclusions is less than 5 %. The feature of Cd3As2 + MnAs is the presence of a significant region of non-mixing of the Cd3As2 and MnAs phase melts. A negative MR was revealed with increasing pressure in the entire studied baric zone. The maximum negative MR is observed in the baric zone of 22 – 26 GPa. Further increase in the pressure up to the maximum level result in the appearance of several extrema on the ΔR/R0(P) curve, with negative MR not exceeding 4 %. Upon pressure release from 50 GPa, the baric dependence of ΔR/R0(P) is characterized by an inversion of the MR sign: at pressures around 40 GPa, a negative MR is replaced by a positive MR, and at around 20 GPa, the maximum value of positive MR of ~5.3 % is observed. Signs of the instability of the monoclinic structure of Cd3As2 resulted from its partial decomposition upon decompression were revealed. The results obtained can be used in spintronics when using appropriate composite materials.

About the Authors

L. A. Saypulaeva
Institute of Physics, DFRC RAS
Russian Federation

Luiza A. Saypulaeva

94, ul. M. Yaragskogo, Makhachkala



N. V. Melnikova
Ural Federal University, Institute of Natural Sciences and Mathematics
Russian Federation

Nina V. Melnikova

48, ul. Kuibysheva, Yekaterinburg, 620002



M. M. Gadzhialiev
Institute of Physics, DFRC RAS
Russian Federation

Magomed M. Gadzhialiev

94, ul. M. Yaragskogo, Makhachkala, 367015



A. V. Tebenkov
Ural Federal University, Institute of Natural Sciences and Mathematics
Russian Federation

Alexander V. Tebenkov

48, ul. Kuibysheva, Yekaterinburg, 620002



A. N. Babushkin
Ural Federal University, Institute of Natural Sciences and Mathematics
Russian Federation

Aleksey N. Babushkin

48, ul. Kuibysheva, Yekaterinburg, 620002

 



V. S. Zakhvalinskii
National University of Science and Technology «MISIS»
Russian Federation

Vasiliy S. Zakhvalinskii

4, Leninsky prosp., Moscow, 119991



M. H. Al-Onaizan
National University of Science and Technology «MISIS»
Russian Federation

Mohammad H. Al-Onaizan

4, Leninsky prosp., Moscow, 119991



A. I. Ril
Institute of General and Inorganic Chemistry, RAS
Russian Federation

Aleksey I. Ril

31, Leninsky prosp., Moscow, 119991



References

1. Wang Z., Weng H., Wu Q., et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 / Phys. Rev. 2013. Vol. 88. N 12. P. 125427. DOI: 10.1103/PhysRevB.88.125427

2. Borisenko S., Gibson Q., Evtushinsky D., et al. Experimental realization of a three-dimensional Dirac semimetal / Phys. Rev. Lett. 2014. Vol. 113. N 2. P. 027603. DOI: 10.1103/PhysRevLett.113.027603

3. Feng J., Pang Y., Wu D., et al. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points / Phys. Rev. 2015. Vol. 92. N 8. P. 081306. DOI: 10.1103/PhysRevB.92.081306

4. He L., Jia Y., Zhang S., et al. Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2 / Quantum Mater. 2016. Vol. 1. N 1. P. 1 – 5. DOI: 10.1038/npjquantmats.2016.14

5. Zhang S., Wu Q., Schoop L., et al. Breakdown of three-dimensional Dirac semimetal state in pressurized Cd3As2 / Phys. Rev. 2015. Vol. 91. N 16. P. 165133. DOI: 10.1103/PhysRevB.91.165133

6. Arushanov E. K. II3V2 compounds and alloys / Crystal Growth and Charact. 1992. Vol. 25. N 3. P. 131 – 201. DOI: 10.1016/0960-8974(92)90030-T

7. Lu H., Zhang X., Bian Y., Jia S. Topological phase transition in single crystals of (Cd1 – xZnx)3As2 / Sci. Rep. 2017. Vol. 7. N 1. P. 3148. DOI: 10.1038/s41598-017-03559-2

8. Cisowski J. Semimagnetic semiconductors based on II – V compounds / Phys. Stat. Sol. 1997. Vol. 200. N 2. P. 311 – 350.

9. Baibich M., Broto J., Fert A., et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices / Phys. Rev. Lett. 1988. Vol. 61. N 21. P. 2472. DOI: 10.1103/PhysRevLett.61.2472

10. Ril A. I., Marenkin S. F. Cadmium Arsenides: Structure, Synthesis of Bulk and Film Crystals, Magnetic and Electrical Properties (Review) / Russ. J. Inorg. Chem. 2021. Vol. 66. N 14. P. 2005. DOI: 10.1134/S0036023621140059

11. Gribanov I., Zavadsky A., Sivachenko A. Low-Temperature Magnetic Transformations in Orthorhombic Manganese Arsenide / FTN. 1979. Vol. 5. N 10. P. 1219 [in Russian].

12. Spezzani C., Ferrari E., Allaria E., et al. Magnetization and microstructure dynamics in Fe/MnAs/GaAs (001): Fe magnetization reversal by a femtosecond laser pulse / Phys. Rev. Lett. 2014. Vol. 113. N 24. P. 247202. DOI: 10.1103/PhysRevLett.113.247202

13. Hubmann J., Bauer B., Körner H., et al. Epitaxial growth of room-temperature ferromagnetic MnAs segments on GaAs nanowires via sequential crystallization / Nano Let. 2016. Vol. 16. N 2. P. 900. DOI: 10.1021/acs.nanolett.5b03658

14. Novotortsev V. M., Marenkin S. F., Fedorchenko I. V., Kochura A. V. Physicochemical foundations of synthesis of new ferromagnets from chalcopyrites AIIBIVCV2 / Zh. Neorg. Khim. 2010. Vol. 55. N 11. P. 1762 [in Russian]. DOI: 10.1134/S0036023610110136

15. Saypulaeva L. A., Gadzhialiev M. M., Alibekov A. G., et al. Effect of hydrostatic pressures of up to 9 GPa on the galvanomagnetic properties of Cd3As2 – MnAs (20 % mol. MnAs) alloy in a transverse magnetic field / Inorg. Mater. 2019. Vol. 55. N 9. P. 873 – 878. DOI: 10.1134/S0020168519090152

16. Alibekov A. G., Mollaev A. Y., Saipullaeva L. A., et al. Hall effect, electrical and magnetic resistance in Cd3As2 + MnAs (30 %) composite at high pressures / Zh. Neorg. Khim. 2017. Vol. 62. N 1. P. 90 – 93 [in Russian]. DOI: 10.7868/S0044457X17010032

17. Alibekov A. G., Mollaev A. Y., Saipullaeva L. A., et al. Magnetotransport effects in granular Cd3As2 + MnAs structures at high pressures / Inorg. Mater. 2016. Vol. 52. N 4. P. 357 – 360. DOI: 10.1134/S0020168516040014

18. Saypulaeva L. A., Gadzhialiev M. M., Alibekov A. G., et al. The effect of high pressure on the electrical and galvanomagnetic properties of the composite Cd3AS2 — 20 % mol. MnAs / Fiz. Tv. Tela. 2020. Vol. 62. N 6. P. 942 – 946 [in Russian]. DOI: 10.1134/S1063783420060256

19. Melnikova N. V., Tebenkov A. V., Sukhanova G. V., et al. Thermoelectric properties of a ferromagnetic semiconductor based on the Dirac semimetal Cd3As2 at high pressure / Fiz. Tv. Tela. 2018. Vol. 60. N 3. P. 494 – 498 [in Russian]. DOI: 10.1134/S1063783418030174

20. Ril A. I., Kochura A. V., Marenkin S. F., et al. Microstructure of crystals of the system Cd3As2 – MnAs / Izv. Yugo-Zapad. Gos. Univ. 2017. Vol. 7. N 2. P. 120 – 134 [in Russian].

21. Vereshchagin L. F., Yakovlev E. N., Vinogradov B. V., et al. Megabar pressure between anvils / High Temp. — High Press. 1974. Vol. 6. N 5. P. 499 – 504.

22. Babushkin A. N., Pilipenko G. I., Gavrilov F. F. The electrical conductivity and thermal electromotive force of lithium hydride and lithium deuteride at 20 – 50 GPa / J. Phys. Condens. Matter. 1993. Vol. 5. N 46. P. 8659. DOI: 10.1088/0953-8984/5/46/005

23. Babushkin A. N. Electrical conductivity and thermal EMF of CsI at high pressures / High Press. Res. 1991. Vol. 6. N 6. P. 349 – 356. DOI: 10.1080/08957959208201042

24. Khvostantsev L. G., Slesarev V. N., Brazhkin V. V. Toroid type high-pressure device: history and prospects / High Press. Res. 2004. Vol. 24. N 3. P. 371 – 383. DOI: 10.1080/08957950412331298761

25. Mollaev A. Y., Saypulaeva L. A., Arslanov R. K., et al. Electrophysical Properties of ZnAs2 and CdAs2 at Hydrostatic Pressure up to 9 GPa / High Press. Res. 2002. Vol. 22. N 1. P. 181 – 184. DOI: 10.1080/08957950211335

26. Arslanov T., Kilanski L., López-Moreno S., et al. Changes in the magnetization hysteresis direction and structure-driven magnetoresistance of a chalcopyrite-based magnetic semiconductor / J. Phys. D. Appl. Phys. 2016. Vol. 49. N 12. P. 125007. DOI: 10.1088/0022-3727/49/12/125007

27. Saypulaeva L., Pirmagomedov Z., Galzhialiev M., et al. Spin -polarized electric current in Cd48.6Mn11.4As40 nanocomposite / Physics of the Solid State. 2021. Vol. 63. N 4. P. 427 – 432. DOI: 10.1134/S1063783421040193

28. Samokhvalov A. A., Evstigneeva S. A., Morchenko A. T., et al. Determination of small magnitudes of magnetostriction in amorphous microwires with an arbitrary type of magnetic anisotropy / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 1(I). P. 62 – 68 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-I-62-68

29. Menyuk N., Kafalas J., Dwight K., Goodenough J. Effects of pressure on the magnetic properties of MnAs / Phys. Rev. 1969. Vol. 177. N 2. P. 942. DOI: 10.1103/PhysRev.177.942

30. Andresen A., Fjellvåg H., Lebech B. Neutron diffraction investigation of MnAs under high pressure / Magn. Mater. 1984. Vol. 43. N 2. P. 158 – 160. DOI: 10.1016/0304-8853(84)90093-3

31. Mattoso N., Eddrief M., Varalda J., et al. Enhancement of critical temperature and phases coexistence mediated by strain in MnAs epilayers grown on GaAs (111) B / Phys. Rev. 2004. Vol. 70. N 11. P. 115324. DOI: 10.1103/PhysRevB.70.115324

32. Kochura A. V., Marenkin S. F., Ril A. I., et al. Growth and Characterization of Cd3As2 + MnAs Composite / J. Nano- Electron. Phys. 2015. Vol. 7. N 4. P. 4079.

33. Liu Y., Tiwari R., Narayan A., et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films / Phys. Rev. 2018. Vol. 97. N 8. P. 085303. DOI: 10.1103/PhysRevB.97.085303


Review

For citations:


Saypulaeva L.A., Melnikova N.V., Gadzhialiev M.M., Tebenkov A.V., Babushkin A.N., Zakhvalinskii V.S., Al-Onaizan M., Ril A.I. Study of the electrophysical and magnetic properties of a Dirac 3D semimetal Cd3As2 with nanogranules of MnAs. Industrial laboratory. Diagnostics of materials. 2023;89(11):52-59. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-11-52-59

Views: 426


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)