Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Modes of wear of babbitt-based composite materials produced by hot pressing

https://doi.org/10.26896/1028-6861-2023-89-11-89-97

Abstract

The effect of additives of Ti2NbAl intermetallic compound on the friction of B83 babbitt samples obtained by hot pressing was studied using optical, electron microscopy and EDS analysis. The structure, friction surface and wear products were studied. Tribological tests were carried out on a universal test system under conditions of dry sliding friction according to the scheme of axial loading: a steel bush against a disk of the material under study. The temperature values near the friction zone were recorded. The limits of application of the material depend on the mode and mechanism of wear occurring in the tribocontact. Changes in the mode and mechanism of wear were assessed by differences in the behavior of the friction coefficient, temperature, difference in the state of friction surfaces, wear intensity and wear products. The results obtained indicate the prospects of using the method of hot pressing of powder from the B83 alloy and discrete particles of the high-strength Ti2NbAl intermetallic phase to get composite materials with improved tribological properties compared to a babbitt alloy. The introduction of reinforcing high-modulus particles of intermetallic compounds changed the structure of the material and affected the friction processes in babbitt, pushing aside the onset of change in the mode of wear towards more severe friction conditions. A significant decrease in the wear intensity of babbitt-based composite materials compared to the original alloy makes it possible to predict an increase in the service life of tribo-units. The data obtained enable us to determine and recommend modes that improve the performance of tribo-nodes in the manufacture of both volumetric inserts and plain bearings made of B83 alloy and, moreover, to create new functionally organized layered compositions with enhanced tribotechnical properties with a base of structural steels and working surface layers not only using B83 babbitt, but also of composite materials based on B83 babbitt.

About the Authors

P. A. Bykov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Pavel A. Bykov

Leninskii prospekt, 49, Moscow, 119334



I. E. Kalashnikov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Igor E. Kalashnikov

Leninskii prospekt, 49, Moscow, 119334



L. I. Kobeleva
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Lubov I. Kobeleva

Leninskii prospekt, 49, Moscow, 119334



I. V. Katin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Russian Federation

Igor V. Katin

Leninskii prospekt, 49, Moscow, 119334



R. S. Mikheev
Moscow State Technical University
Russian Federation

Roman S. Mikheev

5, 2-ya Baumanskaya, Moscow, 105005



References

1. Dong Q., Yin Z., Li H., et al. Simulation and experimental verification of fatigue strength evaluation of journal bearing bush / Engineering Failure Analysis. 2020. Vol. 109. 104275. DOI: 10.1016/j.engfailanal.2019.104275

2. Mallick P. K. 1 — Overview / Materials, Design and Manufacturing for Lightweight Vehicles. — In Woodhead Publishing Series in Composites Science and Engineering. 2010. P. 1 – 32. DOI: 10.1533/9781845697822.1

3. Rajak D. K., Pagar D. D., Kumar R., Pruncu C. I. Recent progress of reinforcement materials: a comprehensive overview of composite materials / Journal of Materials Research and Technology. 2019. Vol. 8. N 6. P. 6354 – 6374. DOI: 10.1016/j.jmrt.2019.09.068

4. Gibson R. F. Principles of Composite Material Mechanics. — 4th Edition. — Boca Raton: CRC Press, 2016. — 700 p. DOI: 10.1201/b19626

5. Qin Q. H. 1 – Introduction to the composite and its toughening mechanisms / Toughening Mechanisms in Composite Materials. In Woodhead Publishing Series in Composites Science and Engineering. 2015. P. 1 – 32. DOI: 10.1016/B978-1-78242-279-2.00001-9

6. Bykov P. A., Kalashnikov I. E., Kobeleva L. I., et al. Mapping wear modes of composite materials with intermetallic reinforcing based on antifrictional alloy of system Al – Sn – Cu / Lett. on Mater. 2021. Vol. 11. N 2. P. 181 – 186. DOI: 10.22226/2410-3535-2021-2-181-186

7. Kalashnikov I. E., Kolmakov A. G., Bolotova L. K., et al. Technological parameters of production and properties of babbit-based composite surfacing rods and deposited antifriction coatings / Inorg. Mater. Appl. Res. 2019. Vol. 10. P. 635 – 641. DOI: 10.30791/0015-3214-2018-1-33-41

8. Zeren A. Embedd ability behaviour of tin-based bearing material in dry sliding / Mater. Des. 20007. Vol. 28. N 8. P. 2344 – 2350. DOI: 10.1016/j.matdes.2006.06.020

9. Valeev I. Sh., Valeeva A. Kh., Mulyukov R. R., Khisamov R. Kh. Structure and properties of babbit Sn11Sb5,5Cu subjected to high pressure torsion / Lett. on Mater. 2016. Vol. 6. N 4. P. 347 – 349. DOI: 10.22226/2410-3535-2016-4-347-349

10. Alcover Junior P. R. C., Pukasiewicz A. G. M. Evaluation of microstructure, mechanical and tribological properties of a babbit alloy deposited by arc and flame spray processes / Tribol. Int. 2019. Vol. 131. P. 148 – 157. DOI: 10.1016/j.triboint.2018.10.027

11. Zeren A., Feyzullahoglu E., Zeren M. A study on tribological behaviour of tin-based bearing material in dry sliding / Mater. Des. 2007. Vol. 28. N 1. P. 318 – 323. DOI: 10.1016/j.matdes.2005.05.016

12. Kolmakov A. G., Kalashnikov I. E., Bolotova L. K., et al. Study of characteristics of composite materials based on B83 antifriction alloy / Inorg. Mater. 2020. Vol. 56. P. 1499 – 1505. DOI: 10.1134/S002016852015008X

13. Kobeleva L. I., Bolotova L. K., Kalashnikov I. E., et al. Effect of microcrystalline boron particles on structure and tribological properties of welded B83 babbitt layers / Inorg. Mater. Appl. Res. 2020. Vol. 11. P. 1 – 6. DOI: 10.1134/S2075113320010207

14. Abioyea T. E., Zuhailawatib H., Azlanb M. A. I., Anasyidab A. S. Effects of SiC additions on the microstructure, compressive strength and wear resistance of Sn – Sb – Cu bearing alloy formed via powder metallurgy / J. Mater. Res. Technol. 2020. Vol. 9. N 6. P. 13196 – 13205. DOI: 10.1016/j.jmrt.2020.08.102

15. Barykin N. P., Fazlyakhmetov R. F., Valeeva A. Kh. Effect of the structure of babbit B83 on the intensity of wear of tribocouplings / Met. Sci. Heat. Treat. 2006. Vol. 48. P. 88 – 91. DOI: 10.1007/s11041-006-0050-x

16. Potekhin B. A., Il’yushin V. V., Khristolyubov A. S. Effect of casting methods on the structure and properties of tinbabbit / Met. Sci. Heat. Treat. 2009. Vol. 51. P. 378 – 382. DOI: 10.1007/s11041-009-9181-1

17. Dong Q., Yin Z., Li H., et al. Effects of Ag micro-addition on structure and mechanical properties of Sn-11Sb-6Cu Babbitt / Mater. Sci. Eng.: A. 2018 Vol. 722. P. 225 – 230. DOI: 10.1016/j.msea.2018.03.034

18. Bykov P. A., Kalashnikov I. E., Kobeleva L. I., et al. Wear modes in testing the antifriction layer of babbitt B83 / Lett. on Mater. 2022. Vol. 12. N 3. P. 219 – 224. DOI: 10.22226/2410-3535-2022-3-219-224

19. Rasool G., Stack M. M. Wear maps for TiC composite based coatings deposited on 303 stainless steel / Tribol. Int. 2014. Vol. 74. P. 93 – 102. DOI: 10.1016/j.triboint.2014.02.002

20. Zhang D., Ho J. K. L., Dong G., et al. Tribological properties of Tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions / Tribol. Int. 2015. Vol. 90. P. 22 – 31. DOI: 10.1016/j.triboint.2015.03.032

21. He Y., Zhao Z., Luo T., et al. Failure analysis of journal bearing used in turboset of a power plant / Mater. Des. 2013. Vol. 52. P. 923 – 931. DOI: 10.1016/j.matdes.2013.06.027

22. Zhang D., Zhao F., Li Y., et al. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface / Appl. Surf. Sci. 2016. Vol. 390. P. 540 – 549. DOI: 10.1016/j.apsusc.2016.08.141

23. Du D., Zhang W., An J. Two Types of Wear Mechanisms Governing Transition between Mild and Severe Wear in Ti – 6Al – 4V Alloy during Dry Sliding at Temperatures of 20 – 250°C / Materials. 2022. Vol. 15. N 4. P. 1416 – 1437. DOI: 10.3390/ma15041416

24. Kalashnikov I. E., Bolotova L. K., Bykov P. A., et al. Tribological properties of the babbit B83 — based composite materials fabricated by powder metallurgy / Russian Metallurgy (Metally). 2016. Vol. 2016. N 7. P. 669 – 674. DOI: 10.1134/S0036029516070090

25. Cao H., Tian Y., Meng Y. A fracture-induced adhesive wear criterion and its application to the simulation of wear process of the point contacts under mixed lubrication condition / Facta Universitatis, Series: Mechanical Engineering. 2021. Vol. 19. N 1. P. 23 – 38. DOI: 10.22190/FUME210108021C

26. Liang D., Ma J., Cai Y., et al. Characterization and elevated-temperature tribological performance of AC-HVAF-sprayed Fe-based amorphous coating / Surface and Coatings Technology. 2020. Vol. 387. 125535. DOI: 10.1016/j.surfcoat.2020.125535

27. Stachowiak G. W., Podsiadlo P. Characterization and classification of wear particles and surfaces / Wear. 2001. Vol. 249. N 1 – 2. P. 194 – 2001. DOI: 10.1016/S0043-1648(01)00562-2

28. J A. R., Kailas S. V. Evolution of wear debris morphology during dry sliding of Ti – 6Al – 4V against SS316L under ambient and vacuum conditions / Wear. 2020. Vol. 456 – 457. 203378. DOI: 10.1016/j.wear.2020.203378

29. Zhao Y. T., Wang S. Q., Yang Z. R., Wei M. X. A new delamination pattern in elevated-temperature oxidative wear / Journal of Materials Science. 2010. Vol. 45. N 1. P. 227 – 232. DOI: 10.1007/s10853-009-3923-8


Review

For citations:


Bykov P.A., Kalashnikov I.E., Kobeleva L.I., Katin I.V., Mikheev R.S. Modes of wear of babbitt-based composite materials produced by hot pressing. Industrial laboratory. Diagnostics of materials. 2023;89(11):89-97. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-11-89-97

Views: 233


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)