Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Chromatographic determination of iodoacetate in lipid nanostructures

https://doi.org/10.26896/1028-6861-2023-89-12-5-12

Abstract

A liposomal form of anticancer drugs is often used to improve pharmacokinetics and reduce systemic toxicity of the drugs. The goal of the study is to develop a method for quantitative analysis of a liposomal form of sodium iodoacetate (IA), glycolysis inhibitor, which exhibits a pronounced antitumor activity. Liposomes were prepared by extrusion at a temperature of 25 – 55°C under argon pressure ranged from 2 to 10 MPa. The obtained liposomes were purified from the non-incorporated component using dialysis. The method of HPLC was used to analyze the inhibitor solution in liposomes. The method of hydrophilic interaction chromatography revealed a high selectivity of iodoacetate with aminopropyl silica gel as a stationary phase. The best option for analysis was to use a spectrophotometric detector. The results of analysis showed that the dose of the inhibitor in 1 ml of liposomes was 0.20 – 0.23 mg regardless of the liposome size. In terms of the weight of an animal, the amount of iodoacetate was 8 – 9 mg/kg. The analysis of liposomes by the developed method showed that the highest yield and a high degree of purification is attained at low temperature (no more than 40°C) and duration of dialysis for about 3 h. For these purposes, the use of liposomes with a diameter of 400 nm turned out to be the best option.

About the Authors

D. A. Korshunov
Cancer Research Institute, Tomsk National Research Medical Center
Russian Federation

Dmitry A. Korshunov

5, Cooperativny per., Tomsk, 634009



I. A. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center
Russian Federation

Irina V. Kondakova

5, Cooperativny per., Tomsk, 634009



E. A. Sidenko
Cancer Research Institute, Tomsk National Research Medical Center
Russian Federation

Evgenia A. Sidenko

5, Cooperativny per., Tomsk, 634009



E. E. Sereda
Cancer Research Institute, Tomsk National Research Medical Center; Siberian State Medical University
Russian Federation

Elena E. Sereda

5, Cooperativny per., Tomsk, 634009; 2, Moskovsky trakt, Tomsk, 634050



N. Yu. Zolotukhina
National Research Tomsk Polytechnic University
Russian Federation

Natalia Yu. Zolotukhina

30, prosp. Lenina, Tomsk, 634050



References

1. Sun D., Gao W., Hu H., Zhou S. Why 90% of clinical drug development fails and how to improve it? / Acta. Pharm. Sin. B. 2022. V. 12. N 7. P. 3049 – 3062. DOI: 10.1016/j.apsb.2022.02.002

2. Veselov V. V., Nosyrev A. E., Jicsinszky L., et al. Targeted Delivery Methods for Anticancer Drugs / Cancers. 2022. V. 14. N 3. 622. DOI: 10.3390/cancers14030622

3. Tran S., DeGiovanni P. J., Piel B., Rai P. Cancer nanomedicine: a review of recent success in drug delivery / Clin. Transl. Med. 2017. V. 6. N 1. 44. DOI: 10.1186/s40169-017-0175-0

4. Liu Y., Li J., Chen M., et al. Palladium-based nanomaterials for cancer imaging and therapy / Theranostics. 2020. V. 10. N 22. P. 10057 – 10074. DOI: 10.7150/thno.45990

5. Cui G., Wu J., Lin J., et al. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies / J. Nanobiotechnol. 2021 V. 19. N 1. 211. DOI: 10.1186/s12951-021-00902-8

6. Zhu L., Zhao J., Guo Z., et al. Applications of Aptamer-Bound Nanomaterials in Cancer Therapy / Biosensors. 2021. V. 11. N 9. 344. DOI: 10.3390/bios11090344

7. Luo L., Wang H., Tian W., et al. Targeting ferroptosis-based cancer therapy using nanomaterials: strategies and applications / Theranostics. 2021. V. 11. N 20. P. 9937 – 9952. DOI: 10.7150/thno.65480

8. Bor G., Mat Azmi I. D., Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects / Ther Delivery. 2019. V. 10. N 2. P. 113 – 132. DOI: 10.4155/tde-2018-0062

9. Korshunov D. A., Kondakova I. V., Shashova E. E. Modern perspective on metabolic reprogramming in malignant neoplasms / Biochemistry (Moscow). 2019. V. 84. N 10. P. 1129 – 1142. DOI: 10.1134/S000629791910002X

10. Mikubo M., Inoue Y., Liu G., Tsao M. S. Mechanism of Drug Tolerant Persister Cancer Cells: The Landscape and Clinical Implication for Therapy / J. Thorac. Oncol. 2021. V. 16. N 11. P. 1798 – 1809. DOI: 10.1016/j.jtho.2021.07.017

11. Faubert B., Solmonson A., De Berardinis R. J. Metabolic reprogramming and cancer progression / Science. 2020. V. 368. N 6487. eaaw5473. DOI: 10.1126/science.aaw5473

12. Cheng Z., Li M., Dey R., Chen Y. Nanomaterials for cancer therapy: current progress and perspectives / J. Hematol. Oncol. 2021. V. 14. N 1. 85. DOI: 10.1186/s13045-021-01096-0

13. Sun X., Peng Y., Zhao J., et al. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors / Bioorg. Chem. 2021. V. 112. 104891. DOI: 10.1016/j.bioorg.2021.104891

14. Korshunov D. A., Kondakova I. V., Klimov I. A., Ivanov V. V. Glycolysis inhibitors monoiodoacetate and 2-deoxyglucose as antitumor agents: experimental study on lewis lung carcinoma model / Bull. Exp. Biol. Med. 2018. V. 165. N 5. P. 695 – 697. DOI: 10.1007/s10517-018-4244-1

15. Brennan S., Esposito S., Abdelaziz M. I. M., et al. Selective protein kinase C inhibition switches time-dependent glucose cardiotoxicity to cardioprotection / Front. Cardiovasc. Med. 2022. V. 9. 997013. DOI: 10.3389/fcvm.2022.997013

16. Yashin Ya., Vedenin A., Yashin A. HPLC and ultra-HPLC: a state and prospects / Analitika. 2015. N 2(21). P. 70 – 84 [in Russian].

17. Lau B. P., Becalski A. Determination of iodoacetic acid using liquid chromatography/electrospray tandem mass spectrometry / Rapid. Commun. Mass. Spectrom. 2008. V. 22. N 12. P. 1787 —1791. DOI: 10.1002/rcm.3547

18. Guo Y. A survey of polar stationary phases for hydrophilic interaction chromatography and recent progress in understanding retention and selectivity / Biomed. Chromatogr. 2022. V. 36. N 4. e5332. DOI: 10.1002/bmc.5332

19. Singh D., Pahwa S. A review on physico-chemical parameters of liposomal doxorubicin / Int. J. Appl. Pharm. 2020. V. 12. N 2. P. 1 – 5. DOI: 10.22159/ijap.2020v12i2.35330

20. Iodoacetic acid. CAMEO Chemicals database, 2023. https:// cameochemicals.noaa.gov/chemical/20524 (accessed March 1, 2023).

21. Milto I. V., Sukhodolo I. V., Usov V. Y. Mononuclear phagocytes of rat liver and lung after intravenous introduction of suspension of magnetite nanoparticles / Cell Tissue Biol. 2012. V. 6. N 5 – 6. P. 490 – 497. DOI: 10.1134/S1990519X12050082

22. Technical Guide for the Elaboration of Monographs. 8th Ed. — European Pharmacopoeia, 2022. P. 45 – 56.

23. United States Pharmacopeia. General Chapter, •621• Chromatography. USP-NF. — Rockville, MD: United States Pharmacopeia. 2023. DOI: 10.31003/USPNF_M99380_06_01

24. Chromatography / Russian Federation State Pharmacopoeia, XIV ed. V. 1. P. 845 – 872 [in Russian].

25. Iodoacetic acid (64-69-7). NIST Chemistry WebBook. NIST Standard Reference Database No. 69, Feb 2015 Release. — Washington, DC: US Sec. Commerce, 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C64697&Mask=400#UV-Vis-Spec (accessed March 1, 2023).

26. Paternostre M. T., Roux M., Rigaud J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate / Biochemistry. 1988. V. 27. N 8. P. 2668 – 2677. DOI: 10.1021/bi00408a006

27. Bjørnestad V. A., Lund R. Pathways of Membrane Solubilization: A Structural Study of Model Lipid Vesicles Exposed to Classical Detergents / Langmuir. 2023. V. 39. N 11. P. 3914 – 3933. DOI: 10.1021/acs.langmuir.2c03207

28. Bjørnestad V. A., Soto-Bustamante F., Tria G., et al. Beyond the standard model of solubilization: Non-ionic surfactants induce collapse of lipid vesicles into rippled bilamellar nanodiscs / J. Colloid Interface Sci. 2023. V. 641. P. 553 – 567. DOI: 10.1016/j.jcis.2023.03.037

29. Labeta M. O., Fernandez N., Festenstein H. Solubilisation effect of Nonidet P-40, triton X-100 and CHAPS in the detection of MHC-like glycoproteins / J. Immunol. Methods. 1988. V. 112. N 1. P. 133 – 138. DOI: 10.1016/0022-1759(88)90043-9

30. Kim M., Hatt J. K., Weigand M. R., et al. Genomic and Transcriptomic Insights into How Bacteria Withstand High Concentrations of Benzalkonium Chloride Biocides / Appl. Environ. Microbiol. 2018. V. 84. N 12. e00197 – 18. DOI: 10.1128/AEM.00197-18

31. Wessels S., Ingmer H. Modes of action of three disinfectant active substances: a review / Regul. Toxicol. Pharmacol. 2013. V. 7. N 3. P. 56 – 67. DOI: 10.1016/j.yrtph.2013.09.006


Review

For citations:


Korshunov D.A., Kondakova I.A., Sidenko E.A., Sereda E.E., Zolotukhina N.Yu. Chromatographic determination of iodoacetate in lipid nanostructures. Industrial laboratory. Diagnostics of materials. 2023;89(12):5-12. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-12-5-12

Views: 312


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)