

Experimental determination of the interlayer fracture toughness of a composite material
https://doi.org/10.26896/1028-6861-2023-89-12-81-87
Abstract
Modeling the propagation of interlaminar defects in multilayer composite materials requires knowledge of the characteristics of the material under study associated with the fracture processes. The goal of the study is determination of the interlaminar fracture toughness in the case of normal traction (GIc). Finite element modeling of testing was carried out proceeding from the data obtained. The delamination process was modeled using the most common approaches within the finite element method: VCCT (virtual crack closure technique) and CZM (cohesive zone model), wherein the fracture toughness is used as the main parameter for the occurrence of delamination. The obtained data are compared with the experiment. To confirm the correctness of the obtained experimental data on the fracture toughness GIc, modeling of the process of compression testing of a strut-type specimen with a defect in the form of a through-the-width delamination was carried out. This problem includes a nonlinear static solution with buckling and subsequent post-buckling behavior, and, as a result, the spread of the delamination zone. The data obtained using finite element modeling are consistent with the available experimental data.
About the Authors
I. S. BelousovRussian Federation
Il’ya S. Belousov
21, Polzunova ul., Novosibirsk, 630051; 20, K. Marksa prosp., Novosibirsk, 630073
V. A. Bespalov
Russian Federation
Valerii A. Bespalov
21, Polzunova ul., Novosibirsk, 630051
References
1. Sridharan S. (ed.). Delamination behaviour of composites. 1st ed. — NW: Woodhead Publishing, 2008. — 788 p.
2. Chermoshentseva A. S. Development of a technique for increasing the strength of thin-walled structural elements made of composite materials with delamination-type defects: dis. phd. — Moscow, 2018. — 168 p. [in Russian].
3. Zhiharev M. V. Estimation of the strength of high-loaded plates made of composite materials under local impact. Candidate’s Thesis — Chelyabinsk, 2019. — 125 p. [in Russian].
4. Mortell D. J., Tanner D. A., McCarthy C. T. In-situ SEM study of transverse cracking and delamination in laminated composite materials / Composites Science and Technology. 2014. Vol. 105. P. 118 – 126. DOI: 10.1016/j.compscitech.2014.10.012
5. Urnev A. S., Chernyatin A. S., Matvienko Y. G., Razumovskii I. A. Experimental and numerical sizing of a delamination defect in layered composite material / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 10. P. 59 – 66 [in Russian]. DOI: 10.26896/1028-6861-2018-84-10-59-66
6. Bokhoeva L. A. Peculiarities of strength calculation of structural elements made of isotropic and composite materials with permissible defects. — Ulan-Ude: VSGTU, 2007. — 192 p. [in Russian].
7. Refahi Oskouei A., Zucchelli A., Ahmadi M., Minak G. An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate / Materials & Design. 2010. Vol. 32. P. 1444 – 1455. DOI: 10.1016/j.matdes.2010.08.048
8. Heidari-Rarani M., Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches / Theor. Appl. Fracture Mech. 2019. Vol. 103. DOI: 10.1016/j.tafmec.2019.102246
9. Ekhtiyari A., Alderliesten R., Shokrieh M. M. Loading rate dependency of strain energy release rate in mode I delamination of composite laminates / Theor. Appl. Fracture Mech. 2021. Vol. 112. DOI: 10.1016/j.tafmec.2021.102894
10. Krueger R. Virtual crack closure technique: History, approach, and applications / Appl. Mech. Rev. Vol. 57(2). P. 109 – 143. DOI: 10.1115/1.1595677
11. Irwin G. Analysis of stresses and strains near the end of the crack traversing a plate / J. Appl. Mech. 1957. Vol. 24. P. 361 – 364.
12. Dugdale D. S. Yielding of steel sheets containing slits / J. Mech. Phys. Solids. 1960. Vol. 8. P. 100 – 104. DOI: 10.1016/0022-5096(60)90013-2
13. Barenblatt G. I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture / Adv. Appl. Mech. 1962. Vol. 7. P. 55 – 129. DOI: 10.1016/S0065-2156(08)70121-2
14. Tamuzs V., Tarasovs S., Viks U. Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens / Eng. Fracture Mech. 2001. Vol. 68. P. 513 – 525. DOI: 10.1016/S0013-7944(00)00131-4
15. Liaojun Yao, Jurui Liu, Zhangming Lyu, Alderliesten R. C., Cui Hao, Chuanxi Ren, Licheng Guo. In-situ damage mechanism investigation and a prediction model for delamination with fibre bridging in composites / Eng. Fracture Mech. 2023. Vol. 281. DOI: 10.1016/j.engfracmech.2023.109079
16. Shokrieh M. M., Salamat-talab M., Heidari-Rarani M. Dependency of bridging traction of DCB composite specimen on interface fiber angle / Theor. Appl. Fracture Mech. 2017. Vol. 90. P. 22 – 32. DOI: 10.1016/j.tafmec.2017.02.009
17. Maksimenko V. N., Olegin I. P., Pustovoi N. V. Methods for calculating the strength and stiffness of structural elements made of composites: textbook. — Novosibirsk: NSTU, 2015. — 424 p. [in Russian].
18. Shokrieh M. M., Rajabpour-Shirazi H., Heidari-Rarani M., Haghpanahi M. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method / Computational Materials Science. 2012. Vol. 65. P. 66 – 73.
Review
For citations:
Belousov I.S., Bespalov V.A. Experimental determination of the interlayer fracture toughness of a composite material. Industrial laboratory. Diagnostics of materials. 2023;89(12):81-87. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-12-81-87