Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Improvement of the method of spark atomic emission spectrometry for the determination of oxysulfides in construction steel

https://doi.org/10.26896/1028-6861-2024-90-1-5-16

Abstract

Conditions for determining oxysulfides in construction steel by spark atomic emission spectrometry (SAES) using an ARL iSpark 8860 spectrometer which is equipped with a Spark-DAT software function for processing spark diagrams are studied. To improve the characteristics of the calibration curves for the determination of Al, Ca, Mn and sulfur forming non-metallic inclusions (NMI), we used certified reference materials of the composition of construction steels. An increase in the sensitivity of Al and Ca determination and correlation coefficients of calibration curves for the determination of Mn and S is shown. The concentration of Al2O3MnS, Al2O3MnSMgO, Al2O3MnSCaS, Al2O3CaOCaS, Al2O3CaOMgOCaS in steels was preliminarily determined using a combination of scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS) according to ASTM E1245 (method 3) in the lack of certified reference materials with oxysulfides. It is shown advisable to determine the concentration of oxysulfides in construction steels by SAES using corrected and developed algorithms for software processing of the integrated spectrum in combination with a pseudo-formula. It is shown expedient to select the appropriate algorithm and pseudo-formula on the basis of Student’s test statistics by comparing the NMI concentrations obtained by SEM-EDS with SAES results. The spark intervals and the delay time of the analytical signal integration for Al, Ca, Mg, Mn, and sulfur are compared. The correctness of the oxysulfide determination by SAES was confirmed in the range of 500 – 1900 sparks (texp = 0.01) and the signal integration delay of 110 μsec (texp = 0.23). Test method for measuring the total concentration of oxysulfides by SAES was tested on production samples of construction steels. The absence of a systematic error and the correctness of the measurement results (texp < 4.30) were proved. It is shown that the developed method for determining the NMI concentration provides drastic reduction of the duration of the analysis from 18 hours (SEM-EDS) to 10 min.

About the Authors

E. A. Probenkova
Lipetsk State Technical University
Russian Federation

Evelina A. Probenkova

30, Moskovskaya ul., Lipetsk, 398600



E. V. Yakubenko
Novolipetsk Metallurgical Plant (PJSC NLMK)
Russian Federation

Elena V. Yakubenko

2, pl. Metallurgov, Lipetsk, 398040



T. N. Ermolaeva
Lipetsk State Technical University
Russian Federation

Tatyana N. Ermolaeva

30, Moskovskaya ul., Lipetsk, 398600



Yu. N. Orekhova
Novolipetsk Metallurgical Plant (PJSC NLMK)
Russian Federation

Yulia. N. Orekhova

2, pl. Metallurgov, Lipetsk, 398040



References

1. Malakhov N. V., Motovilina G. D., Khlusova E. I., et al. Structural heterogeneity and methods of its reduction for improvement of quality of structural steels / Inorg. Mater. Appl. Res. 2009. N 3(59). P. 52 – 64 [in Russian].

2. Gubenko S. I., Parusov V. V., Derevyanchenko I. V. Non-metallic inclusions in steel. — Donetsk: ART-PRESS, 2005. — 536 p. [in Russian].

3. Gun G. S., Selivanova E. S., Polyakova M. A. Comparative analysis of the requirements in standards to assess the content of non-metallic inclusions in steel and alloys / Kachestvo Obrab. Mater. 2016. N 2(6). P. 33 – 39 [in Russian].

4. Ilkun V. I., Ulyeva G. А., Reshetkina E. N., at al. Influence of non-metallic inclusions on the formation of cracks / Tr. Univ. 2020. N 4(81). P. 18 – 23 [in Russian].

5. Ånmark N., Karasev A., Jönsson P. G. The effect of different non-metallic inclusions on the machinability of steels / Materials. 2015. Vol. 8. N 2. P. 751 – 783. DOI: 10.3390/ma8020751

6. Fedoseeva E. M. The study of non-metallic inclusions in metal pipe steels using thermal analysis / Vestn. Perm. Univ. Mashinostr. Materialoved. 2014. Vol. 16. N 3. P. 30 – 36 [in Russian].

7. Yang W., Peng K., Zhang L., et al. Deformation and fracture of non-metallic inclusions in steel at different temperatures / J. Mater. Res. Technol. 2020. Vol. 9. N 6. P. 15016 – 15022. DOI: 10.1016/j.jmrt.2020.10.066

8. Vasconcellos da Costa e Silva A. L. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications / J. Mater. Res. Technol. 2019. Vol. 8. N 2. P. 2408 – 2422. DOI: 10.1016/j.jmrt.2019.01.009

9. Toribio J., Ayaso F.-J., González B., et al. Fracture behaviour of high-strength cold-drawn pearlitic steel wires: The role of non-metallic inclusions / Procedia Struct. Integr. 2021. Vol. 33. P. 1203 – 1208. DOI: 10.1016/j.prostr.2021.10.136

10. Scorza D., Carpinteri A., Ronchei C., et al. A novel methodology for fatigue assessment of high strength steels with non-metallic inclusions / Procedia Struct. Integr. 2022. Vol. 39. P. 503 – 508. DOI: 10.1016/j.prostr.2022.03.123

11. Vantadori S., Ronchei C., Scorza D., et al. Influence of non-metallic inclusions on the high cycle fatigue strength of steels / Int. J. Fatigue. 2022. Vol. 154. 106553. DOI: 10.1016/j.ijfatigue.2021.106553

12. Sidorova E., Karasev A., Kuznetsov D., et al. Investigation of the initial corrosion destruction of a metal matrix around different non-metallic inclusions on surfaces of pipeline steels / Materials. 2022. Vol. 15. N 7. 2530. DOI: 10.3390/ma15072530

13. Lou X., Andresen P. L., Rebak R. B. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior / J. Nucl. Mater. 2018. Vol. 499. P. 182 – 190. DOI: 10.1016/j.jnucmat.2017.11.036

14. Grigorovitch K. V., Krasovsky P. V., Trushnikova A. S. Analysis of non-metallic inclusions — the basis for quality control of steel and alloys / Anal. Kontrol’. 2002. Vol. 6. N 2. P. 133 – 142 [in Russian].

15. Sidorenko T. I., Voznaya V. I., Belash Yu. S., Ermachenok E. V. Automatic analysis of nonmetallic inclusions in steel using electron microscope with energy dispersive microprobe / Lit’e Metallurg. 2022. N 1. P. 64 – 69 [in Russian]. DOI: 10.21122/1683-6065-2022-1-64-69

16. Morozov A. O., Pogodin A. M., Komolova O. A., et al. Control of oxide non-metallic inclusions in production of if steel / Izv. Vuzov. Chern. Metallurgiya. 2020. Vol. 63. N 10. P. 782 – 790 [in Russian]. DOI: 10.17073/0368-0797-2020-10-782-790

17. Grigorovich K. V., Alpatov A. V., Rumyantsev B. A., et al. Study of powders presence and contents of light elements in finely divided Nb3Al / Mater. Appl. Res. 2016. N 7. P. 310 – 315. DOI: 10.1134/S207511331G02012X

18. Sawafuji Y. Automatic ultrasonic testing of non-metallic inclusions detectable with size of several tens of micrometers using a double probe technique along the longitudinal axis of a small-diameter bar / ISIJ Int. 2021. Vol. 61. N 1. P. 1 – 10. DOI: 10.2355/isijinternational.ISIJINT-2020-248

19. Ignatov M. N., Ignatova A. M., Kanina A. E. Identification and properties of nonmetallic inclusions in welded joints / Izv. Vuzov. Povolzh. Region. Tekhn. Nauki. 2013. N 2(26). P. 140 – 148 [in Russian].

20. Tian L., Liu L., Ma B., et al. Evaluation of maximum non-metallic inclusion sizes in steel by statistics of extreme values method based on Micro-CT imaging / Metall. Res. Technol. 2022. Vol. 119. N 2. P. 1 – 8. DOI: 10.1051/metal/2022016

21. Fedoseeva E. M. The study of non-metallic inclusions in metal pipe steels using thermal analysis / Vestn. Perm. Nats. Issl. Politekhn. Univ. Mashinostr. Materialoved. 2014. Vol. 16. N 3. P. 30 – 36 [in Russian].

22. Imashuku S., Wagatsuma K. Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd) / Metall. Mater. Trans. B. 2020. Vol. 51. N 1. P. 79 – 84. DOI: 10.1007/s11663-019-01732-8

23. Vlaicu G., Popescu V., Parsan F., et al. Control of Ca in steels using spark data technique / Rom. Rep. Phys. 2010. Vol. 62. N 2. P. 350 – 359.

24. Umanskii A. A., Simachev A. S., Golovatenko A. V. Nonmetallic inclusions in rails made of electro-steel alloyed with chromium / Izv. Vuzov. Chern. Metallurgiya. 2019. Vol. 62. N 12. P. 936 – 942 [in Russian]. DOI: 10.17073/0368-0797-2019-12-936-942

25. Bock D. N., Labusov V. A. Determination of non-metallic inclusions in metal alloys by spark atomic emission spectrometry (review) / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 12. P. 5 – 19 [in Russian]. DOI: 10.26896/1028-6861-2018-84-12-5-19

26. Bock D. N., Labusov V. A., Zarubin I. A. Determination of non-metallic inclusions in metal alloys by spark optical emission spectrometry / Industr. Lab. Mater. Diagn. 2015. Vol. 81. N 1. P. 92 – 97 [in Russian].

27. Pande M. M., Guo M., Dumarey R., et al. Determination of Steel Cleanliness in Ultra Low Carbon Steel by Pulse Discrimination Analysis-Optical Emission Spectroscopy Technique / ISIJ Int. 2011. Vol. 51. N 11. P. 1778 – 1787. DOI: 10.2355/isijinternational.51.1778

28. Kaushik P., Lehmann J., Nadif M. State of the art in control of inclusions, their characterization, and future requirements / Metall. Mater. Trans. B. 2012. Vol. 43. N 4. P. 710 – 725. DOI: 10.1007/s11663-012-9646-2

29. Bengtson A., Sedlakova M., Schmitz H.-U., et al. EUR 25153. Process based steel cleanliness investigations and rapid metallurgical screening of inclusions by modern PDA techniques (RAMSCI). European commission final report. — Luxembourg: Publications Office of the European Union, 2012. — 138 p. DOI: 10.2777/58274

30. Meilland R., Dosdat L. Rapid characterization of inclusionnary cleanliness in steels by PDA-OES mapping / Metall. Res. Technol. 2002. Vol. 99. N 4. P. 373 – 382. DOI: 10.1051/metal:2002128

31. Pissenberger A., Pissenberger E. Automatic cleanness determination of production samples with OES/PDA / BHM Berg und Huettenmaennische Monatshefte. 2007. Vol. 1. N 152. P. 13 – 17. DOI: 10.1007/s00501-006-0265-6

32. Janis D., Karasev A., Jönsson P. G. Evaluation of Inclusion Characteristics in Low-Alloyed Steels by Mainly Using PDA/OES Method / ISIJ Int. 2015. Vol. 55. N 10. P. 2173 – 2181. DOI: 10.2355/isijinternational.ISIJINT-2015-172


Review

For citations:


Probenkova E.A., Yakubenko E.V., Ermolaeva T.N., Orekhova Yu.N. Improvement of the method of spark atomic emission spectrometry for the determination of oxysulfides in construction steel. Industrial laboratory. Diagnostics of materials. 2024;90(1):5-16. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-1-5-16

Views: 331


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)