Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Non-destructive colorimetric analysis of drugs for fluoroquinolones using a smartphone

https://doi.org/10.26896/1028-6861-2024-90-1-17-25

Abstract

A technique for non-destructive analysis of drugs for fluoroquinolones by diffuse reflection of IR radiation using a smartphone and a device printed on a 3D printer is proposed. It is shown that the diffuse reflection of IR radiation (850 nm) from tablets containing fluoroquinolones as an active substance can be recorded by a smartphone camera. The blister pack and the shell of tablets do not interfere with the passage of IR radiation, which is confirmed by a comparative analysis of the results of the colorimetric determination of fluoroquinolones in drug samples in a package, without it, and on a tablet split. A correlation of the analytical signal with the concentration of the active substance is observed regardless of the test option. The possibility of using chemometric methods providing the reduction of the time of analysis and visualization of the data obtained is shown. The dataset was processed by the principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least squares regression (PLS), and the method of least squares using PhotoMetrix PRO® software. The aforementioned algorithms also provided identification of drugs by the manufacturer. Colorimetric signals from tablets of the same manufacturer form separate clusters on the charts constructed using the HCA algorithm. Data obtained using PCA indicate the location of signals from tablets from different manufacturers in separate quadrants, which makes it possible to identify the pharmaceutical company, as well as the country of manufacture, e.g., the drug Ciprofloxacin with different concentrations of the active substance manufactured in Russia is located in quadrants 2 and 4, whereas the drugs manufactured in India are located in quadrants 1 and 3. The relative standard deviation of the analysis results did not exceed 0.07. The use of chemometric methods of analysis in determination of active substances is considered in detail.

About the Authors

V. G. Amelin
Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University; The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Vasily G. Amelin

87, Gor’kogo ul., Vladimir, 600000

5, Zvenigorodskoye shosse, Moscow, 123022



O. E. Emelyanov
Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University
Russian Federation

Oleg E. Emelyanov

87, Gor’kogo ul., Vladimir, 600000



References

1. Mashkovsky M. D. Medicines: a guide for doctors. — Moscow: Novaya Volna, 2012. — 1216 p. [in Russian].

2. Mostafa S., El-Sadek M., Alla E. A. Spectrophotometric determination of enrofloxacin and pefloxacin through ion-pair complex formation / J. Pharm. Biomed. Anal. 2002. Vol. 28. P. 173 – 180. DOI: 10.1016/s0731-7085(01)00591-x

3. Amin A. S., Gouda A. A. E., El-Sheikh R., Zahran F. Spectrophotometric determination of gatifloxacin in pure form and in pharmaceutical formulation / Spectrochim. Acta, Part A. 2007. Vol. 67. P. 1306 – 1313. DOI: 10.1016/j.saa.2006.09.041

4. Gonzalez J. A. O., Mochon M. C., de la Rosa F. J. B. Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum / Talanta. 2000. Vol. 52. P. 1149 – 1156. DOI: 10.1016/S0039-9140(00)00484-7

5. Ocana J. A., Barragan F. J., Callejon M. Fluorescence and terbium-sensitised luminescence determination of garenoxacin in human urine and serum / Talanta. 2004. Vol. 63. P. 691 – 697. DOI: 10.1016/j.talanta.2003.12.016

6. Ocana J. A., Barragan F. J., Callejon M. Spectrofluorimetric and micelle-enhanced spectrofluorimetric determination of gatifloxacin in human urine and serum / J. Pharm. Biomed. Anal. 2005. Vol. 37. P. 327 – 332. DOI: 10.1016/j.jpba.2004.10.027

7. Amelin V. G., Shogah Z. A. C., Bol’shakov D. S. Solid-Phase-Fluorimetric Determination of Quinolones in Medicinal Preparations on Cellulose Paper and in a Thin Silica Layer Using a Smartphone / J. Anal. Chem. 2021. Vol. 76. N 7. P. 797 – 805. DOI: 10.1134/S1061934821070030

8. Amelin V. G., Shogah Z. A. C., Bol’shakov D. S., Tretyakov A. V. Digital colorimetry of indicator test-systems using a smartphone and chemometric analysis in determination of quinolones in pharmaceuticals / Zh. Prikl. Spektrosk. 2022. Vol. 89. N 1. P. 84 – 93 [in Russian]. DOI: 10.47612/0514-7506-2022-89-1-84-93

9. Kuz’mina N. E., Moiseev S. V., Romanov B. K. Problems of using the method of NIR spectrometry to establish the identity of the active substance in drugs / Vedom. Nauch. Ts. Ékspert. Sredstv Med. Prim. 2021. Vol. 11. P. 49 – 54 [in Russian]. DOI: 10.30895/1991-2919-2021-11-1-49-54

10. Balyklova K. S., Titova A. V., Sadchikova N. P., et al. Analysis of Acetylsalicylic Acid Tablets by Near-IR Spectroscopy / Vestn. Roszdravnadzora. 2013. Vol. 2. P. 62 – 65 [in Russian].

11. Basova E. M., Litvinenko Iu. N., Polotnianko N. A. Identification of drug manufacturers using IR spectroscopy and principal component analysis / Vestn. Mezhdunar. Univ. Prirody Obshch. Chel. «Dubna». 2019. Vol. 43. P. 7 – 15 [in Russian].

12. Basova E. M., Polotnianko N. A. Strategy for detecting possible falsification of drugs on the example of tablets «Acetylsalicylic acid» and «Paracetamol» / Vestn. Mezhdunar. Univ. Prirody Obshch. Chel. «Dubna». 2020. Vol. 49. P. 3 – 13 [in Russian].

13. Monogarova O. V., Oskolok K. V., Apyari V. V. Colorimetry in chemical analysis / J. Anal. Chem. 2018. Vol. 73. N 11. P. 1076 – 1084. DOI: 10.1134/S1061934818110060

14. Apyari V. V., Gorbunova M. V., Isatchenko A. I., et al. Use of household color-recording devices in quantitative chemical analysis / J. Anal. Chem. 2017. Vol. 72. N 11. P. 1127 – 1137. DOI: 10.1134/S106193481711

15. Ivanov V. M., Kuznetsova O. V. Chemical colorometry: potential of the method, application areas and future prospects / Rus. Chem. Rev. 2001. Vol. 70. N 5. P. 357 – 372. DOI: 10.1070/RC2001v070n05ABEH000636

16. Huang X., Xu D., Chen J., et al. Smartphone-based analytical biosensors / Analyst. 2018. Vol. 143. P. 5330 – 5351. DOI: 10.1039/c8an01269e

17. Rezazadeh M., Seidi Sh., Lid M., et al. The modern role of smartphones in analytical chemistry / Trends Anal. Chem. 2019. Vol. 118. P. 548 – 555. DOI: 10.1016/j.trac.2019.06.019

18. Böck F. C., Helfer G. A., da Costa A. B., et al. PhotoMetrix and colorimetric image analysis using smartphones / J. Chemometrics. 2020. Vol. 34. P. 1 – 20. DOI: 10.1002/cem.3251

19. Helfer G. A., Magnus V. S., Böck F. C., et al. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices / J. Braz. Chem. 2017. Vol. 28. P. 328 – 335. DOI: 10.5935/0103-5053.20160182

20. Rateni G., Dario P., Cavall F. Smartphone-based food diagnostic technologies: A Review / Sensors. 2017. Vol. 17. P. 1 – 22. DOI: 10.3390/s17061453


Review

For citations:


Amelin V.G., Emelyanov O.E. Non-destructive colorimetric analysis of drugs for fluoroquinolones using a smartphone. Industrial laboratory. Diagnostics of materials. 2024;90(1):17-25. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-1-17-25

Views: 332


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)