

Magnetometric determination of the percentage ratio of paramagnetic — ferromagnetic phase
https://doi.org/10.26896/1028-6861-2024-90-1-34-41
Abstract
Measuring of the magnetic characteristics of metal objects makes it possible to study the entire volume of the material simultaneously, while the commonly used metallographic and X-ray (phase) methods provide information only about a thin subsurface metal layer. The results of determining the percentage ratio of the paramagnetic — ferromagnetic phase in metallic materials by the magnetometric method are presented. An equation that relates the magnetic permeability and the parameters of the sample is derived. A relative change in the magnetic permeability, which characterizes the phase relationships, was determined by recording the oscillation frequency of the electric circuit built on the chain capacitor — inductor (measuring coil), in which the sample was placed. A two-phase structure (ferrite + austenite) was simulated by placing ferro- and non-ferromagnetic samples (Fe + Cu or Fe + X19H10T) in different proportions into the measuring coil. The relative magnetic permeability of 160Cr12MoV steel samples quenched at 1030 – 1250°C was studied. It has been revealed that a quenching temperature should not exceed 1120°C to provide a hardness value of 62 HRC. The results obtained can be used in the search for optimal heat treatment regimes, primarily for high-speed steels with a high austenite stability.
About the Authors
M. Yu. BelomyttcevRussian Federation
Michail Yu. Belomyttcev
4, str. 1, Leninsky prosp., Moscow, 119049
E. I. Kuzko
Russian Federation
Evgeny I. Kuzko
4, str. 1, Leninsky prosp., Moscow, 119049
References
1. Metal science and heat treatment of steel. Vol. 1. Methods of testing and research. — Moscow: Metallurgiya, 1985. — 352 p. [in Russian].
2. Babich N. G., Zakharenko N. I. Magnetometric studies of chromium-based solid solutions in the Cr – Co – Mn ternary system / Fiz. Met. Metalloved. 2003. Vol. 96. N 5. P. 28 – 31 [in Russian].
3. Uvarov A. I., Sandovsky N. F., Vildanova N. F., Anufrieva E. I. Influence of the structure of aging invars with metastable austenite on the frequency dependence of magnetic permeability / Metally. 2008. N 4. P. 92 – 99 [in Russian].
4. Kornilova A. V., Selishchev A. I., Idarmachev I. M. The use of magnetic types of non-destructive testing for products from tool die steels / Metalloved. Term. Obrab. Met. 2015. N 10(724). P. 56 – 62 [in Russian].
5. Kuzko E. I., Belomyttsev M. Yu., Belov V. A. Investigation of phase transformations in high-chromium ferritic-martensitic steels by the magnetometric method / Metalloved. Term. Obrab. Met. 2018. N 4. P. 57 – 63 [in Russian].
6. Belomyttsev M. Yu., Kuzko E. I., Prokofiev P. A. Using the magnetometric method for the study of ferritic-martensitic steels / Industr. Lab. Mater. Diagn. 2017. Vol. 83. N 11. P. 41 – 46 [in Russian].
7. Belomyttsev M. Yu., Kuzko E. I., Prokofiev P. A., Sulyaev T. D. Determination of critical temperatures and structural state of 13 % chromium steels by the magnetometric method / Izv. Vuzov. Cher. Met. 2017. Vol. 60. N 9. P. 732 – 738 [in Russian].
8. Wei Gong, Zhouhua Jiang, Lixiang Zhang, Changyong Chen, Yanwu Dong. Influence of Mg addition on inclusions and mechanical properties of Cr12Mo1V1 steel under high pressure / Materials Science and Engineering A. 2020. Vol. 791. N 139410. P. 1 – 11. DOI: 10.1016/j.msea.2020.139410
9. Shveikin V. P., Kuznetsov V. P., Kamantsev I. S., et al. Influence of heat treatment on the structure and mechanical properties of tool steel 1.6% C – 12% Cr – 0.8% Mo – 0.9% V / Metalloved. Term. Obrab. Met. 2022. N 8(806). P. 21 – 26 [in Russian]. DOI: 10.30906/mitom.2022.8.21-26
10. Mordasov D. M., Zotov S. V. Thermal cycling treatment of dies for operation under conditions for hot deformation from 12CrMoV steel / Vestn. TGTU. 2016. Vol. 22. N 3. P. 481 – 490 [in Russian].
11. Pirtovšeka T., Kuglera G., Godecb M., Terčelja M. Microstructural characterization during the hot deformation of 1.17 C – 11.3 Cr – 1.48 V – 2.24 W – 1. 35 Mo ledeburitic tool steel / Materials characterization. 2011. N 62. P. 189 – 197. DOI: 10.1016/j.matchar.2010.11.016
12. Di H., Zhang X., Wang G., Liu X. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high speed steel / J. Mater. Process. Technol. 2005. Vol. 166. P. 359 – 363. DOI: 10.1016/j.jmatprotec.2004.07.085
13. Kugler G., Knap M., Palkowski H., Turk R. Estimation of activation energy for calculating the hot workability properties of metals / Metallurgiya. 2004. Vol. 43. N 4. P. 267 – 272.
14. Imbert C. A. C., McQueen H. J. Dynamic recrystallisation of A2 and M2 tool steels / Materials Science and Engineering, A. 2001. Vol. 313. P. 104 – 116.
15. Rodenburg C., Krzyzanowski M., Beynon J., Rainforth W. Hot workability of spray-formed AISI M3-2 high-speed steel / Materials Science and Engineering, A. 2004. Vol. 386. P. 420 – 427. DOI: 10.1016/j.msea.2004.07.056
16. Hetzner D. W. Refining carbide size distributions in M1 high speed steel by processing and alloying / Materials characterization. 2001. N 46. P. 175 – 182.
17. Ghomashchi M. R. Quantitative microstructural analysis of M2 grade high speed steel during high temperature treatment / Acta Materialia. 1998. Vol. 46. N 14. P. 5207 – 5220.
Review
For citations:
Belomyttcev M.Yu., Kuzko E.I. Magnetometric determination of the percentage ratio of paramagnetic — ferromagnetic phase. Industrial laboratory. Diagnostics of materials. 2024;90(1):34-41. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-1-34-41