

Staging of fatigue crack kinetics: patterns and features
https://doi.org/10.26896/1028-6861-2024-90-1-58-71
Abstract
The concept of staging of fatigue crack kinetics (FCK) is presented. According to the developed concept the staging of FCK is attributed to changes in critical (preceding the fracture) deformation structures localized at the crack front and in micromechanisms of fracture operating in these structures. At the first stage of the FCK, these critical structures are clusters of dislocation braked near various barriers. In this case, the crack propagates through the low-energy-type mechanisms of brittle fracture with the formation of cleavages of various scale. At the second and third stages of the FCK, a critical two-level fragmented structure (two-level nanostructured state) is formed near the crack front. Brittle microlaminations along the boundaries of large-scale fragments of this structure oriented in the direction of maximum principal deformation play a key role in the high-energy-type mechanism of stable crack growth at the second stage of the FCK and form fatigue striations on the fracture surface. At the third stage of the FCK the mechanism of stable crack growth is added with the mechanism of origination and development of fracture at the boundaries of small-scale fragments of the critical fragmented structure with the formation of micropores which results in the formation microdimples in the corresponding areas of the fracture surface. The universal nature of the FCK staging and features of manifestation are illustrated by fractographic study of the fatigue crack propagation in highly stressed parts of aero-engines under various cyclic loading conditions, i.e., under self-induced and random vibration of compressor blades, repeated-static loading of compressor disks in the course of a cyclic test under vacuum conditions and during operation in the presence of crystallographic texture.
About the Author
N. V. TumanovRussian Federation
Nikolay V. Tumanov
2, Aviamotornaya ul., Moscow, 111116
References
1. Forsyth P. J. E. Fatigue damage and crack growth in aluminium alloys / Acta Metallurgica. 1963. Vol. 11. P. 703 – 713.
2. Krasovskii A. Ya. Mechanisms of fatigue crack growth in metals / Probl. Prochn. 1980. N 10. P. 65 – 72 [in Russian].
3. Kishkina S. I. Fracture resistance of aluminium alloys. — Moscow: Metallurgiya, 1981. — 280 p. [in Russian].
4. Botvina L. R. Fracture kinetics of structural materials. — Moscow: Nauka, 1989. — 230 p. [in Russian].
5. Romaniv O. N., Yarema S. Ya., Nikivorchin G. N., Makhutov N. A., Stadnik M. M. Fatigue and cyclic crack resistance of structural materials. Vol. 4 / Fracture mechanics and strength of materials: Handbook in 4 volumes / Ed. V. V. Panasyuk. — Kiev: Naukova dumka, 1990. — 680 p. [in Russian].
6. Klesnil M., Lukas P. Fatigue of metallic materials. — Elsevier, 1992. — 270 p.
7. Miller K. J. Materials science perspective of metal fatigue resistance / Mater. Sci. Technol. 1993. Vol. 9. P. 453 – 462.
8. Terent’ev V. F. Fatigue strength of metals and alloys. — Moscow: Intermet Inzhiniring, 2002. — 288 p. [in Russian].
9. Paris P., Erdogan F. A critical analysis of crack propagation laws / J. Basic Eng. (Trans. ASME). 1963. N 12. P. 528 – 534.
10. Tumanov N. V. Staging of fatigue crack kinetics and mechanism of periodic splitting-rupture / Proc. I International conference «Deformation and fracture of materials». In 2 volumes. Vol. 1. — Moscow: IMET RAN, 2006. P. 85 – 87 [in Russian].
11. Tumanov N. V. Mechanism of stable growth of fatigue cracks / Advances in mechanical behavior, plasticity and damage (Proc. EUROMAT 2000). In 2 volumes. Vol. 2 / Eds. D. Miannay, P. Costa, D. François, A. Pineau. — Elsevier, 2000. P. 1065 – 1070.
12. Tumanov N. V. Steady fatigue crack growth: micromechanism and mathematical modeling / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 11. P. 52 – 69 [in Russian]. DOI: 10.26896/1028-6861-2018-84-11-52-69
13. Grosskreutz J. C., Shaw G. G. Fine subgrain structure adjacent to fatigue cracks / Acta Metallurg. 1972. Vol. 20. N 4. P. 523 – 528.
14. Yakovleva T. Yu. Local plastic deformation and fatigue of metals. — Kiev: Naukova dumka, 2003. — 236 p. [in Russian].
15. Valiev R. Z., Aleksandrov I. V. Nanostructured materials obtained by intensive plastic deformation. — Moscow: Logos, 2000. — 272 p. [in Russian].
16. Tyumentsev A. N., Korotaev A. D., Dimentberg I. A., Pinzhin Yu. P., Chernov V. M. Patterns of plastic deformation in high-strength and nanocrystalline metal materials. — Novosibirsk: Nauka, 2018. — 296 p. [in Russian].
17. Rybin V. V. Large plastic deformation and fracture of metals. — Moscow: Metallurgia, 1986. — 224 p. [in Russian].
18. Novikov I. I., Ermishkin V. A. Micromechanisms of metal fracture. — Moscow: Nauka, 1991. — 368 p. [in Russian].
19. Shtremel M. A. Fracture. In 2 volumes. Vol. 2. Fracture of structures. — Moscow: Izd. Dom MISiS, 2015. — 976 p. [in Russian].
20. Cook J., Gordon J. E. A mechanism for the control of crack propagation in all-brittle systems / Proc. Royal Soc. Ser. A. 1964. Vol. 282. N 1393. P. 508 – 520.
21. Tumanov N. V. Failure mechanisms under static and cyclic loading / Tyazh. Mashinostr. 2010. N 4. P. 21 – 25 [in Russian].
22. Tumanov N. V. Kinetic equation of stable growth for low cycle fatigue cracks / Vestn. Samar. Gos. Aérokosm. Univ. 2014. N 5(47). Part 1. P. 20 – 28 [in Russian].
23. Tumanov N. V., Porter A. M., Lavrent’eva M. A., Cherkasova S. A., Voroby’eva N. A., Leshin D. P. Multi-scale complex fractodiagnostics of aero engine compressor disks / Vestn. Samar. Gos. Aérokosm. Univ. 2010. N 4(24). P. 98 – 112 [in Russian].
24. Tumanov N. V., Karimbaev K. D., Servetnik A. N. Multilevel modeling of the stress state of a turbine disk with cracks and calculation of stress intensity factors / Modern methods for ensuring strength reliability of aero engine parts / Eds. Yu. A. Nozhnitskii, B. F. Shorr, I. N. Dolgopolov. — Moscow: TORUS PRESS, 2010. P. 215 – 223 [in Russian].
25. Sachin V. M., Tumanov N. V., Lavrent’eva M. A., Cherkasova S. A. Complex fractodiagnostics of flatter of aero engine fan blades / Vestn. Samar. Gos. Aérokosm. Univ. 2011. N 3(27). Part 2. P. 185 – 194 [in Russian].
26. Tumanov N. V., Vorob’eva N. A., Kalashnikova A. I., Kalinin D. M., Kozharinov E. V. Complex fractodiagnostics of aviation bevel gears / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 2. P. 55 – 63 [in Russian]. DOI: 10.26896/1028-6861-2018-84-2-55-63
27. Tumanov N. V., Vorob’eva N. A., Kalashnikova A. I., Kuzmin E. P., Lavrent’eva M. A., Servetnik A. N. Computational and fractographic study of stable growth of low-cycle fatigue cracks in the disk of aero engine turbine under complex loading cycles / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 4. P. 52 – 60 [in Russian]. DOI: 10.26896/1028-6861-2021-87-4-52-60
28. Tumanov N. V. Fatigue and crack kinetics in aero engine fan blades under random vibration / Fatigue testing and analysis under variable amplitude loading conditions (ASTM STP 1439) / Eds. P. C. McKeighan and N. Ranganathan. — West Conshohocken, PA: ASTM International, 2005. P. 200 – 211.
29. Tumanov N. V., Vorob’eva N. A., Mitina Yu. L., Kalashnikova A. I. Effect of texture on low cycle fatigue crack kinetics in aero engine disks made from Ti-alloys / Proc. VI International Conference «Fundamental researches and innovative technologies in mechanical engineering». — Moscow: IMASh RAN, 2019. P. 406 – 408 [in Russian].
30. Tumanov N. V., Vorob’eva N. A., Lavrent’eva M. A., Mitina Yu. L. Estimation of crystallographic mesotexture effect on survivability of aero engine disks made from Ti-alloys / Proc. VI International Conference «Survivability and structural materials science». — Moscow: IMASh RAN, 2022. P. 374 – 377 [in Russian].
31. Electron backscatter diffraction in materials science / Eds. A. J. Schwartz, M. Kumar, B. L. Adams, D. P. Field. — Springer, 2009. — 403 p.
Review
For citations:
Tumanov N.V. Staging of fatigue crack kinetics: patterns and features. Industrial laboratory. Diagnostics of materials. 2024;90(1):58-71. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-1-58-71