Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of palladium content in catalysts based on different carbon supports by inductively coupled plasma — atomic emission spectrometry (ICP-AES)

https://doi.org/10.26896/1028-6861-2024-90-2-12-18

Abstract

Catalytic processes and technologies are the structure-forming elements of modern chemical, petrochemical and pharmaceutical industries. Prospects of their development are strongly determined by continuous improvement of the existing catalysts and developing the advanced and more efficient ones. Among the available catalysts, an important place belongs to palladium catalysts with carbon supports. Palladium as an active component exhibits unique catalytic properties in various transformations of organic substances: hydrogenation, dehydrogenation, isomerization, dehydrocyclization, carbonylation, oxidation, etc. To control the content of the active component of a catalyst, precise and rapid physicochemical methods are used. ICP-AES shows a good performance in the analytical practice due to the rapidity, sensitivity, high accuracy and selectivity in determining various elements. The aim of the study was to develop a scientifically grounded methodological approach to estimate the palladium content in the catalysts synthesized on different carbon supports made of carbon black and Sibunit, which combines only the acidic decomposition of a sample and analysis by ICP-AES. A series of palladium catalysts synthesized on the carbon supports with different structural and textural characteristics was studied. An urgent goal is to control the content of the active component in the composition of catalysts. This characteristic affects the phase and electronic state of the metal, the structural and textural characteristics and thus determines the activity and selectivity of catalysts during operation. Therefore, quantitative chemical analysis is one of the main methods used to control the quality of catalysts. A method for quantitative determination of palladium concentration, which combines acidic decomposition of a sample and ICP-AES has been developed. The carbon support type was shown to exert no effect on the accuracy and reproducibility of data obtained by the analysis of supported palladium catalysts. The content of palladium in such catalysts can be measured using analytical lines 340.458 and 360.955 nm without lowering the measurement accuracy. The selected conditions of sample preparation make it possible to carry out a quantitative analysis of metal systems based on the carbon support with high accuracy. The relative error in determining the elements did not exceed 4%, the relative standard deviation was no more than 0.04. The results of this work can be used to analyze catalysts of similar chemical composition by ICP-AES.

About the Authors

R. R. Izmailov
Federal Research Center «Boreskov Institite of Catalysis of the Siberian Branch of the Russian Academy of Sciences»
Russian Federation

Rinat R. Izmailov

54, ul. Neftezavodskaya, Omsk, 644040



V. A. Drozdov
Federal Research Center «Boreskov Institite of Catalysis of the Siberian Branch of the Russian Academy of Sciences»
Russian Federation

Vladimir A. Drozdov

54, ul. Neftezavodskaya, Omsk, 644040



R. M. Mironenko
Federal Research Center «Boreskov Institite of Catalysis of the Siberian Branch of the Russian Academy of Sciences»
Russian Federation

Roman M. Mironenko

54, ul. Neftezavodskaya, Omsk, 644040



A. V. Lavrenov
Federal Research Center «Boreskov Institite of Catalysis of the Siberian Branch of the Russian Academy of Sciences»
Russian Federation

Alexander V. Lavrenov

54, ul. Neftezavodskaya, Omsk, 644040



References

1. Mironenko R. M., Belskaya O. B., Likholobov V. A. Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions / Catal. Today. 2020. Vol. 357. P. 152 – 165. DOI: 10.1016/j.cattod.2019.03.023

2. Semikolenov V. A. Modern approaches to the preparation of «palladium on charcoal» catalysts / Russ. Chem. Rev. 1992. Vol. 61. N 2. P. 168 – 174 DOI: 10.1070/RC1992v061n02ABEH000938

3. Plaksin G. V., Baklanova O. N., Lavrenov A. V., Likholobov V. A. Carbon materials from the Sibunit family and methods for controlling their properties / Solid Fuel Chem. 2014. Vol. 48. N 6. P. 349 – 355. DOI: 10.3103/s0361521914060032

4. Bonarowska M., Pielaszek J., Semikolenov V. A., Karpiński Z. Pd- Au/Sibunit Carbon Catalysts: Characterization and Catalytic Activity in Hydrodechlorination of Dichlorodifluoromethane (CFC-12) / J. Catal. 2002. Vol. 209. N 2. P. 528 – 538. DOI: 10.1006/jcat.2002.3650

5. Golubina E. V., Lokteva E. S., Lazareva T. S., et al. Hydrodechlorination of Tetrachloromethane in the Vapor Phase in the Presence of Pd-Fe/Sibunit Catalysts / Kinet. Catal. 2004. Vol. 45. N 2. P. 183 – 188. DOI: 10.1023/B:KICA.0000023789.28190.1b

6. Simakova I. L., Demidova Y. S., Gläsel J., et al. Controlled synthesis of PVP-based carbon-supported Ru nanoparticles: synthesis approaches, characterization, capping agent removal and catalytic behavior / Catal. Sci. Technol. 2016. Vol. 6. N 24. P. 8490 – 8504. DOI: 10.1039/c6cy02086k

7. Mironenko R. M., Belskaya O. B., Likholobov V. A. Synthesis of Pd/C Catalysts: Approaches to Regulating the Structure of Active Sites toward Achieving High Selectivity in Hydrogenation of Organic Compounds / Russ. J. General Chem. 2020. Vol. 90. N 3. P. 532 – 549. DOI: 10.1134/s1070363220030299

8. Smirnova N. S., Shlyapin D. A., Leont’eva N. N., et al. Comparative EXAFS and TEM study of Pd/Sibunit and Pd-Ga/Sibunit catalysts for liquid-phase acetylene hydrogenation / Bull. Russ. Acad. Sci. Phys. 2015. Vol. 79. N 9. P. 1186 – 1190. DOI: 10.3103/s106287381501030x

9. Glyzdova D. V., Khramov E. V., Smirnova N. S., et al. Study on the Active Phase Formation of Pd-Zn/Sibunit Catalysts During the Thermal Treatment in Hydrogen / Appl. Surf. Sci. 2019. Vol. 483. P. 730 – 741. DOI: 10.1016/j.apsusc.2019.03.215

10. Zhou H., Yang X., Li L., et al. PdZn Intermetallic Nanostructure with Pd-Zn-Pd Ensembles for Highly Active and Chemoselective Semi- Hydrogenation of Acetylene / ACS Catalysis. 2016. Vol. 6. N 2. P. 1054 – 1061. DOI: 10.1021/acscatal.5b01933

11. Pan J. M., Wei X. J. Determination of Ruthenium in Waste Ruthenium Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry after Sample Digestion by High Temperature Fusion / Adv. Mater. Res. 2014. Vol. 1033 – 1034. P. 603 – 606. DOI: 10.4028/www.scientific.net/amr.1033-1034.603

12. Huang C., Zhang H., Zhao Y., et al. Diatomite-supported Pd-M (M = Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long- chain aliphatic esters / J. Colloid Interface Sci. 2012. Vol. 386. N 1. P. 60 – 65. DOI: 10.1016/j.jcis.2012.07.032

13. Yakukhnov S. A., Pentsak E. O., Galkin K. I., et al. Rapid «Mix- and-Stir» Preparation of Well-Defined Palladium on Carbon Catalysts for Efficient Practical Use / ChemCatChem. 2018. Vol. 10. N 8. P. 1869 – 1873. DOI: 10.1002/cctc.201700738

14. Smirnova N. S., Shlyapin D. A., Shitova N. B., et al. EXAFS study of Pd/Sibunit and Pd-Ga/Sibunit catalysts for liquid-phase hydrogenation of acetylene to ethylene / J. Mol. Catal. A: Chem. 2015. Vol. 403. P. 10 – 14. DOI: 10.1016/j.molcata.2015.03.014

15. Mironenko R. M., Likholobov V. A., Belskaya O. B. Nanoglobular carbon and palladium-nanoglobular carbon catalysts for liquid-phase hydrogenation of organic compounds / Russ. Chem. Rev. 2022. Vol. 91. N 1. RCR5017. DOI: 10.1070/RCR5017

16. Romanenko A. V., Voropaev I. N., Abdullina R. M., Chumachenko V. A. Development of palladium catalysts on carbon supports from the Sibunit family for vegetable oil hydrogenation processes / Solid Fuel Chem. 2014. Vol. 48. N 6. P. 356 – 363. DOI: 10.3103/S0361521914060044

17. Simonov P. A., Romanenko A. V., Likholobov V. A. Hydrogenation of ethylp-nitrobenzoate on Pd/Sibunit catalysts / Solid Fuel Chem. 2014. Vol. 48. N 6. P. 364 – 370. DOI: 10.3103/S0361521914060068

18. Smirnova N., Shlyapin D., Surovikin Y., et al. The influence of a carbon support on the catalytic properties of Pd/Sibunit and Pd- Ga/Sibunit catalysts for liquid-phase acetylene hydrogenation / Solid Fuel Chem. 2015. Vol. 49. N 1. P. 14 – 19. DOI: 10.3103/S0361521915010103

19. Xiong R., Zhao W., Wang Z., Zhang M. A sulfur-tolerant phosphorus doped Pd/C catalyst for hydrogenation of 4-nitrothioanisole / Mol. Catal. 2015. Vol. 500. 111332. DOI: 10.1016/j.mcat.2020.111332

20. Paschos O., Simonov A. N., Bobrovskaya A. N., et al. Bismuth modified Pd/C as catalysts for hydrogen related reactions / Electrochem. Commun. 2010. Vol. 12. N 11. P. 1490 – 1492. DOI: 10.1016/j.elecom.2010.08.014

21. Klokov S. V., Lokteva E. S., Golubina E. V., et al. Carbon- Supported Palladium-Cobalt Catalysts in Chlorobenzene Hydrodechlorination / Russ. J. Phys. Chem. A. 2002. Vol. 93. N 10. P. 1986 – 2002. DOI: 10.1134/S0036024419100121

22. Kalenchuk A. N., Leonov A. V., Bogdan V. I., Kustov L. M. Dehydrogenataion of Bicyclohexyl over Ni/Oxidized Sibunit Catalyst / Russ. J. Phys. Chem. A. 2019. Vol. 93. N 4. P. 652 – 657. DOI: 10.1134/S0036024419040150

23. Pittayaporn N., Therdthianwong A., Therdthianwong S. Au/C catalysts promoted with Ni for glycerol electrooxidation in alkaline media / J. Appl. Electrochem. 2018. Vol. 48. P. 251 – 262. DOI: 10.1007/s10800- 018-1155-9

24. Alekseenko A. A., Ashihina E. A., Shpanko S. P., et al. Application of CO Atmosphere in the Liquid Phase Synthesis as a Universal Way to Control the Microstructure and Electrochemical Performance of Pt/C Electrocatalysts / Appl. Catal., B. 2018. Vol. 226. P. 608 – 615. DOI: 10.1016/j.apcatb.2018.01.013

25. Pavlets A. S., Alekseenko A. A., Tabachkova N. Y., et al. A novel strategy for the synthesis of Pt-Cu uneven nanoparticles as an efficient electrocatalyst toward oxygen reduction / Int. J. Hydrogen Energy. 2021. Vol. 46. N 7. P. 5355 – 5368. DOI: 10.1016/j.ijhydene.2020.11.09415

26. Alekseenko A. A., Moguchikh E. A., Safronenko O. I., Guterman V. E. Durability of de-alloyed PtCu/C electrocatalysts / Int. J. Hydrogen Energy. 2018. Vol. 43. N 51. P. 22885 – 22895. DOI: 10.1016/j.ijhydene.2018.10.139

27. Babenko A. V., Izmaylov R. R., Leont’eva N. N. Optimization of sample preparation of mono- and bimetallic catalysts based on Sibunit carbon carrier for quantitative analysis by ICP-AES / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 7. P. 23 – 28 [in Russian]. DOI: 10.26896/1028-6861-2022-88-7-23-28

28. Glyzdova D. V., Afonasenko T. N., Temerev V. L., Shlyapin D. A. Acetylene Hydrogenation on Pd-Zn/Sibunit Catalyst: Effect of Solvent and Carbon Monoxide / Pet. Chem. 2021. Vol. 61. N 4. P. 490 – 497. DOI: 10.1134/S0965544121050169


Review

For citations:


Izmailov R.R., Drozdov V.A., Mironenko R.M., Lavrenov A.V. Determination of palladium content in catalysts based on different carbon supports by inductively coupled plasma — atomic emission spectrometry (ICP-AES). Industrial laboratory. Diagnostics of materials. 2024;90(2):12-18. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-2-12-18

Views: 386


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)