

Study of crucial factors for minimizing the roughness of chemical coatings with Ni – P and Ni – Cu – P alloys
https://doi.org/10.26896/1028-6861-2024-90-2-29-38
Abstract
The surface roughness of coatings has a significant impact on their functional properties and efficiency. We present the results of studying the effect of the main technological parameters on the roughness of chemical coatings with Ni – P and Ni – Cu – P alloys. The key factors affecting the roughness of coatings were determined by the Taguchi method. Parameters of the coating process were varied in the experiments: concentration of components in solution, pH, temperature, and the time of deposition. It is found that the surface roughness increases linearly with the thickness of coatings. The concentration of sodium hypophosphite and pH value have the greatest influence on the development of roughness. It is shown that the lowest roughness is observed at concentrations of sodium hypophosphite and copper salt 0.358 and 0.0012 mol/liter, pH 5.8 and temperature 90 °C. The rate of the surface roughness development for Ni – P and Ni – Cu – P coatings under optimal conditions is 0.68 and 0.97 %/μm (before optimization — 6.72 %/μm). The obtained results can be used to improve the methodology for reducing the roughness of coatings with Ni – P and Ni – Cu – P alloys and, accordingly, to improve the functionality, wear resistance and quality of coatings.
About the Authors
E. G. VinokurovRussian Federation
Evgeny G. Vinokurov
9, Miusskaya pl., Moscow, 125047
31, Leninsky prosp., Moscow, 119071
20, ul. Usievicha, Moscow, 125190
C. R. Gainetdinov
Russian Federation
Chingiz R. Gainetdinov
9, Miusskaya pl., Moscow, 125047
R. V. Grafushin
Russian Federation
Roman V. Grafushin
9, Miusskaya pl., Moscow, 125047
V. D. Skopintsev
Russian Federation
Vladimir D. Skopintsev
20/1, ul. Delegatskaya, Moscow, 127473
V. V. Vasilev
Russian Federation
Vladimir V. Vasilev
9, Miusskaya pl., Moscow, 125047
T. F. Burukhina
Russian Federation
Tatyana F. Burukhina
References
1. Riedel W. Electroless nickel plating. — Stevenage, Hertfordshire: Finishing Publications, 1991. — 398 p.
2. Balaraju J. N., Ezhil Selvi V., William Grips V. K., et al. Electrochemical studies on electroless ternary and quaternary Ni – P based alloys / Electrochimica Acta. 2006. Vol. 52. P. 1064 – 1074. DOI: 10.1016/j.electacta.2006.07.001
3. Kundu S., Das S., Sahoo P. Friction and wear behavior of electroless Ni – P – W coating exposed to elevated temperature / Surfaces and Interfaces. 2019. Vol. 14. P. 192 – 207. DOI: 10.1016/j.surfin.2018.12.007
4. Georgieva J., Armyanov S. Electroless deposition and some properties of Ni – Cu – P and Ni – Sn – P coatings / Journal of Solid State Electrochemistry. 2007. Vol. 11. P. 869 – 876. DOI: 10.1007/s10008-007-0276-6
5. Popoola A. P. I., Loto C. A., Osifuye C. O., et al. Corrosion and wear properties of Ni-Sn-P ternary deposits on mild steel via electroless method / Alexandria Engineering Journal. 2016. Vol. 55. P. 2901 – 2908. DOI: 10.1016/j.aej.2016.06.018
6. Nur Ariffah M. S., Nurulakmal M. S., Anasyida A. S., et al. Surface roughness, wear and thermal conductivity of ternary electroless Ni – Ag – P coating on copper substrate / Mater. Res. Express. 2020. Vol. 7. N 2. DOI: 10.1088/2053-1591/ab71c4
7. Gokzhaev M. B., Morgunov A. V., Skopintsev V. D. Optimizing solution composition for the chemical deposition of nickel-copper-phosphorus alloys / Inorganic Materials. 2008. Vol. 44. N 12. P. 1319 – 1321. DOI: 10.1134/S0020168508120108
8. Vinokurov E. G., Morgunov A. V., Skopintsev V. D. Compositional optimization of chemical copper-doped nickel-phosphorus coatings / Inorganic Materials. 2015. Vol. 51. N 8. P. 788 – 792. DOI: 10.1134/S0020168515070195
9. Vinokurov E. G., Zhigunov F. N., Morgunov A. V., et al. Deposition of nickel-phosphorus and nickel-phosphorus-copper chemical coatings from glycinate solutions / Galvanotekhn. Obrab. Poverkhn. 2015. Vol. 23. N 3. P. 40 – 46 [in Russian].
10. Deng H., Moller P. Effects of the substrate surface morfology on the porosity of electroless nickel coatings / Transactions of the Institute of Metal Finishing. 1993. Vol. 71. P. 142 – 147.
11. Beer C. F. Improving the corrosion resistance of electroless nickel deposits / Surface Technology. 1981. Vol. 12. N 1. P. 89 – 92. DOI: 10.1016/0376-4583(81)90139-4
12. Deng H., Moller P. Effects of Pretreatment on the structure and properties of electroless nickel coatings / Plating and Surface Finishing. 1994. Vol. 81. P. 73 – 77. 13. Ernst P., Wadsworth I., Marshall G. Porosity of electroless nickel coatings investigated using different porosity tests and their application / Transactions of the IMF. 1997. Vol. 75. N 5. P. 194 – 199. DOI: 10.1080/00202967.1997.11871171 14. Taheri V., Oguocha I., Yannacopoulos S. The tribological characteristics of electroless NiP coatings / Wear. 2001. Vol. 249. P. 389 – 396. DOI: 10.1016/S0043-1648(01)00539-7
13. Sahoo P. Optimization of electroless Ni – P coatings based on multiple roughness characteristics / Surface and Interface Analysis. 2008. Vol. 40. N 12. P. 1552 – 1561.
14. Vinokurov E. G., Gridchin S. N., Mukhametova G. M., et al. Protonated nickel bis-glycine chelate: effective precursor for electroless deposition of nickel — phosphorus alloy / Theoretical Foundations of Chemical Engineering. 2021. Vol. 55. N 5. P. 870 – 879. DOI: 10.1134/S0040579521040345
15. Mukhametova G. M., Vinokurov E. G., Burukhina T. F., et al. Multicriteria optimization of the composition of a solution of complex nickel compounds with glycine and succinic acid for chemical deposition of Ni – P alloy / Izv. Vuzov. 2021. Vol. 64. N 5. P. 88 – 97 [in Russian]. DOI: 10.6060/ivkkt.20216405.6359
16. Sharlo G. Methods of inorganic chemistry. Quantitative analysis of inorganic compounds. — Moscow: Khimiya, 1965. — 866 p. [in Russian].
17. Dedkov Yu. M., Koluzanova V. P., Kirakoyan A. K. Spectrophotometric determination of copper with picramine-epsilon / Journal of Analytical Chemistry. 1970. Vol. 25. N 8. P. 1482 – 1487 [in Russian].
18. Ermakov S. M., Semenchikov D. N. On optimization methods in the problems of experiment design / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 1. P. 72 – 77 [in Russian]. DOI: 10.26896/1028-6861-2019-85-1-I-72-77
19. Grigoriev Yu. D. Q-optimal experimental designs and close to them experimental designs for polynomial regression on the interval / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 5. P. 65 – 72 [in Russian]. DOI: 10.26896/1028-6861-2020-86-5-65-72
20. Orlov A. I. Statistical simulations method in applied statistics / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 5. P. 67 – 79 [in Russian]. DOI: 10.26896/1028-6861-2019-85-5-67-79
21. Taguchi G. Introduction to quality engineering: designing quality into products and processes. — Tokyo: Asian Productivity Organization, 1990. — 191 p.
22. Ross P. J. Taguchi techniques for quality engineering. 2nd ed. — New York: McGraw-Hill Professional, 1995. — 329 p.
23. Petukhov I. V. Effect of concentration of chemical nickel plating solution components on topography and microrelief of Ni – P coatings / Élektrokhimiya. 2008. Vol. 44. N 2. P. 161 – 172 [in Russian].
24. Petukhov I. V., Semenova V. V., Medvedeva N. A., et al. Effect of deposition time on the processes of Ni – P coatings formation / Vestn. Perm. Univ. 2011. N 3. P. 47 – 56 [in Russian].
25. Biswas A., Das S., Sahoo P. Correlating tribological performance with phase transformation behavior for electroless Ni – (high)P coating / Surface and Coatings Technology. 2017. Vol. 328. P. 102 – 114. DOI: 10.1016/j.surfcoat.2017.08.043
Review
For citations:
Vinokurov E.G., Gainetdinov C.R., Grafushin R.V., Skopintsev V.D., Vasilev V.V., Burukhina T.F. Study of crucial factors for minimizing the roughness of chemical coatings with Ni – P and Ni – Cu – P alloys. Industrial laboratory. Diagnostics of materials. 2024;90(2):29-38. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-2-29-38