Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the wear resistance of composite coatings modified with h-BN particles on AZ31 magnesium alloy

https://doi.org/10.26896/1028-6861-2024-90-2-39-46

Abstract

A low wear resistance is a significant disadvantage of magnesium-based alloys widely used in industry. The results of plasma electrolytic oxidation (PEO) carried out in an aqueous-alkaline phosphate electrolyte with the addition of hexagonal boron nitride (h-BN) powder to obtain coatings with greater wear resistance on the surface of AZ31 magnesium alloy are presented. The PEO method is one of the most promising for surface treatment of magnesium alloys, since oxidation is carried out in alkaline aluminate, silicate or phosphate electrolytes with various functional additives. The addition of nanocrystalline hexagonal h-BN powder in the form of a suspension into the electrolyte volume does not affect the electrical parameters of PEO, and h-BN particles are incorporated into the structure of the formed composite coating, increasing the wear resistance. It is shown that the resulting coatings have a relief typical of PEO with developed morphology and porosity, which change depending on the oxidation time. In this case, the incorporation of h-BN particles into the coating occurs by an inert mechanism, since they do not undergo chemical transformations with the formation of new phases. Composite coatings obtained on the surface of the AZ31 magnesium alloy by the PEO method consist of crystalline phases of MgO and Mg3(PO4)2, regardless of the addition of h-BN particles to the electrolyte. The wear resistance of coatings is 6 – 8 times higher compared to the untreated alloy. The results obtained can be used to produce PEO coatings with increased wear resistance and use them in various sectors of the economy.

About the Authors

A. L. Zhaludkevich
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus
Belarus

Aliaksandr L. Zhaludkevich

P. Brovki vul. 19, Minsk, 220072



S. A. Karpushenkov
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus; Belarusian State University
Belarus

Sergey A. Karpushenkov

P. Brovki vul. 19, Minsk, 220072

Nezavisimosti prosp. 4, Minsk, 220030



L. S. Karpushenkava
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus; Belarusian State University
Belarus

Larisa S. Karpushenkava

P. Brovki vul. 19, Minsk, 220072

Nezavisimosti prosp. 4, Minsk, 220030



A. V. Konovalova
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus
Belarus

Alexandra V. Konovalova

P. Brovki vul. 19, Minsk, 220072



O. V. Ignatenko
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus
Belarus

Oleg V. Ignatenko

P. Brovki vul. 19, Minsk, 220072



T. V. Shoukavaya
Scientific and Practical Material Research Center, National Academy of Sciences of Belarus
Belarus

Tatsiana V. Shoukavaya

P. Brovki vul. 19, Minsk, 220072



References

1. Buling A., Zerrer J. Increasing the application fields of magnesium by ultraceramic: Corrosion / Surface and Coating Technology. 2019. Vol. 369. P. 142 – 155. DOI: 10.1016/j.surfcoat.2019.04.025

2. Molaei M., Babaei K., Fattah-alhosseini A. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: a review / Journal of Magnesium and Alloys. 2021. Vol. 9. P. 1164 – 1186. DOI: 10.1016/j.jma.2020.11.016

3. Kulekci M. K. Magnesium and its alloys applications in automotive industry / The International Journal of Advanced Manufacturing Technology. 2008. Vol. 39. N 9 – 10. P. 851 – 865. DOI: 10.1007/s00170-007-1279-2

4. Meng L., Liu X., Liu L., et al. Comparative Investigation of the Corrosion Behavior and Biocompatibility of the Different Chemical Conversion Coatings on the Magnesium Alloy Surfaces / Metals. 2022. Vol. 12. P. 1644. DOI: 10.3390/met12101644

5. Chino Y., Yamamoto A., Iwasaki H., et al. Solid Recycling of an AZ31 Mg Alloy with a Vapor Deposition Coating Layer of High Purity Mg / Materials Transactions. 2003. Vol. 44. N 4. P. 578 – 582. DOI: 10.2320/matertrans.44.578

6. Singh B., Singh G., Sidhu B. Analysis of corrosion behaviour and surface properties of plasma-sprayed composite coating of hydroxyapatite-tantalum on biodegradable Mg alloy ZK60 / Journal of Composite Materials. 2019. Vol. 53. N 19. P. 2661 – 2673. DOI: 10.1177/0021998319839127

7. Yakovleva N. M., Kokatev A. N., Oskin K. I., et al. Study of black protective-decorative nanocomposite anodic coatings on the surface of AMg5 aluminum alloy / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 7. P. 34 – 44 [in Russian]. DOI: 10.26896/1028-6861-2023-89-7-34-44

8. Berezin E. K., Kornev A. B., Rodyushkin V. M. Ultrasonic diagnostics in the study of coatings applied by gas-flame spraying / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 1. P. 28 – 34 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-28-34

9. Mahallawy N. A., Shoeib M. A., Abouelenain M. H. Z91 Magnesium Alloys: Anodizing of Using Environmental Friendly Electrolytes / Journal of Surface Engineered Materials and Advanced Technology. 2011. Vol. 1. N 2. P. 62 – 72. DOI: 10.4236/jsemat.2011.12010

10. Karpushenkov S. A., Kulak A. I., Shchukin G. L., et al. Microplasma Electrochemical Deposition of Aluminum Oxide-Polyethylene Composite Coatings on Iron Surface / Protection of Metals and Physical Chemistry of Surfaces. 2010. Vol. 46. N 4. P. 463 – 468. DOI: 10.1134/S207020511004012X

11. Lu X., Blawert C., Scharnagl N., et al. Influence of incorporating Si3N4 particles into the oxide layer produced by plasma electrolytic oxidation on AM50 Mg alloy on coating morphology and corrosion properties / Journal of Magnesium and Alloys. 2013. Vol. 1. N 4. P. 267 – 274. DOI: 10.1016/j.jma.2013.11.001

12. Lugovskoy A., Zinigrad M., Kossenko A., et al. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes / Applied Surface Science. 2013. Vol. 264. P. 743 – 747. DOI: 10.1016/j.apsusc.2012.10.114

13. Rakoch A. G., Monakhova E. P., Khabibullina Z. V., et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism / Journal of Magnesium and Alloys. 2020. Vol. 8. P. 587 – 600. DOI: 10.1016/j.jma.2020.06.002

14. Hadzima B., Kajanek D., Jambor M., et al. PEO of AZ31 Mg Alloy: Effect of Electrolyte Phosphate Content and Current Density / Metals. 2020. Vol. 10. P. 1521. DOI: 103390/met10111521

15. Yerokhin A., Nie X., Leyland A., et al. Plasma electrolysis for surface engineering / Surface and Coating Technology. 1999. Vol. 122. P. 73 – 93. DOI: 10.1016/j.surfcoat.S0257-8972(99)00441-7

16. Lu X., Blawert C., Huang Y., et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles / Electrochimica Acta. 2016. Vol. 187. P. 20 – 33. DOI: 101016/electacta.2015.11.033

17. Lu X., Blawert C., Zheludkevich M., et al. Insights into plasma electrolytic oxidation treatment with particle addition / Corrosion Science. 2015. Vol. 101. P. 201 – 207. DOI: 10.1016/j.corsci.2015.09.016

18. Sun X., Zhang J., Pan W., et al. A review on the preparation and application of BN composite coatings / Ceramics International. 2023. Vol. 49. P. 24 – 39. DOI: 10.1016/j.ceramint.2022.10.259

19. Ao N., Liu D., Wang S., et al. Microstructure and Tribological Behavior of a TiO2/hBN Composite Ceramic Coating Formed via Micro-Arc Oxidation of Ti-6Al-4V Alloy / Journal of Materials Science and Technology. 2016. Vol. 32. N 10. P. 1071 – 1076. DOI: 10.1016/j.jmst.2016.06.015

20. Serdechnova M., Karpushenkov S., Karpushenkava L., et al. The Influence of PSA Pre-Anodization of AA2024 on PEO Coating Formation: Composition, Microstructure, Corrosion, and Wear Behaviors / Materials. 2018. Vol. 11. P. 2428. DOI: 10.3390/ma11122428


Review

For citations:


Zhaludkevich A.L., Karpushenkov S.A., Karpushenkava L.S., Konovalova A.V., Ignatenko O.V., Shoukavaya T.V. Study of the wear resistance of composite coatings modified with h-BN particles on AZ31 magnesium alloy. Industrial laboratory. Diagnostics of materials. 2024;90(2):39-46. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-2-39-46

Views: 279


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)