

Calculation of the stress-strain state of layers of cross-ply laminate based on an experimental stress-strain curves under uniaxial tension
https://doi.org/10.26896/1028-6861-2024-90-2-62-72
Abstract
A method for calculating the stress-strain state of layers of cross-ply laminate based on an experimental deformation diagram under uniaxial tension is proposed. The essence of the method consists in solving a system of two equations describing the experimental curves σx = f(εx) and σx = f(εy), which allows determination of two unknown parameters related to the secant elastic characteristics of the material layers. The law of change in the remaining unknown parameters is set by assumptions regarding deformation of the polymer matrix composite and its layers during loading. To carry out the calculation, it is necessary to set the initial values of the elastic properties of the unidirectional material of the layers, which should be well consistent with the initial values of the elastic properties of the structure under study determined from the experiment. According to the developed algorithm, calculated dependences between average stresses, deformations and secant elastic properties of the layers of the structure are obtained (0°/90°/90°/0°) made of fiberglass E-Glass/MY750 using experimental data from the literature. Calculations carried out for three sets of initial values of the elastic properties of the material under study showed qualitatively identical results. The transverse tensile stress in the 90° layer reaches a maximum in the first half of the stress-strain diagram, and then decreases to zero. A similar stress in the 0° layer reaches a maximum at the failure point of the structure under study. It is revealed that the maximum calculated values of transverse stresses acting in layers 0° and 90° noticeably exceed the transverse tensile strength of the material specified in the literature. The longitudinal tensile stress in the 0° layer reaches a maximum at the failure point and corresponds to 95% of the value of the longitudinal tensile strength of the material. The longitudinal compressive stress in the 90° layer is at a low level throughout the deformation process of the structure under study. The results of this study can be recommended for developing models of the behavior of layers with cracks in the matrix when loading a polymer matrix composite.
About the Authors
A. O. PolovyiRussian Federation
Aleksandr O. Polovyi
15, Kievskoye Shosse, 249031, Obninsk
N. G. Lisachenko
Russian Federation
Natalia G. Lisachenko
15, Kievskoye Shosse, 249031, Obninsk
References
1. Alfutov N. A., Zinoviev P. A., Popov B. G. Calculation of multilayer plates and shells of composite materials. — Moscow: Mashinostroenie, 1984. — 264 p. [in Russian].
2. Hinton M. J., Kaddour A. S., Soden P. D. Failure criteria in fibre reinforced polymer composites: The World-Wide Failure Exercise. — Elsevier Ltd., 2004. — 1268 p. DOI: 10.1016/B978-0-080-44475-8.X5000-8
3. Garnich M. R., Akula V. M. K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites / Applied Mechanics Reviews. 2009. Vol. 62. N 1. P. 010801.1 – 010801.33. DOI: 10.1115/1.3013822
4. Fedulov B. N., Fedorenko A. N., Kantor M. M., et al. Failure analysis of laminated composites based on degradation parameters / Meccanica. 2017. Vol. 53. P. 359 – 372. DOI: 10.1007/s11012-017-0735-9
5. Ruslantsev A. N., Dumansky A. M. Model of nonlinear deformation and damage accumulation in polymer composites / Nauka Obraz. MGTU im. N. E. Baumana. 2014. N 2. P. 324 – 331 [in Russian]. DOI: 10.7463/0214.0687567
6. Malakhov A. V., Polilov A. N., Tian X. Progressive failure analysis of variable stiffness composite structures / AIP Conference Proceedings. 2018. P. 030038-1 – 030038-4. DOI: 10.1063/1.5084399
7. Zhao L., Qin T., Zhang J., Chen Y. 3D gradual material degradation model for progressive damage analyses of unidirectional composite materials / Mathematical Problems in Engineering. 2015. Vol. 2015. P. 1 – 11. DOI: 10.1155/2015/145629
8. Qin T., Zhao L., Xu J., Liu F., Zhang J. Model of CEL for 3D Elements in PDMs of Unidirectional Composite Structures / Computer Modeling in Engineering & Sciences. 2019. Vol. 118. N 1. P. 157 – 176. DOI: 10.31614/cmes.2019.04379
9. Mohammadi M., Sadeghi A. Initial and progressive failure analysis of a composite pyramidal lattice cylinder under axial loading: A comparison with experimental results / Journal of Composite Materials. 2020. Vol. 54. P. 4947 – 4957. DOI: 10.1177/0021998320942949
10. De Luca A., Caputo F. A review on analytical failure criteria for composite materials / AIMS Materials Science. 2017. Vol. 4. Issue 5. P. 1165 – 1185. DOI: 10.3934/matersci.2017.5.1165
11. Meon M. S., Rao M., Schröder K. Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria / World Academy of Science, Engineering and Technology, International Journal of Materials and Metallurgical Engineering. 2016. Vol. 10. P. 1281 – 1286.
12. Doan C. L., Lure S. A., Dudchenko A. A. Modeling of the properties degradation due to cracking and delamination for the static and cyclic loadings / Mekh. Kompozits. Mater. Konstr. 2008. Vol. 14. N 4. P. 623 – 637 [in Russian].
13. Liu P. F., Yang Y. H., Gu Z. P., et al. Finite Element Analysis of Progressive Failure and Strain Localization of Carbon Fiber Epoxy Composite Laminates by ABAQUS / Appl. Compos. Mater. 2015. Vol. 22. P. 711 – 731. DOI: 10.1007/s10443-014-9432-1
14. Yoon D. H., Kim S., Kim J., Doh Y. Development and Evaluation of Crack Band Model Implemented Progressive Failure Analysis Method for Notched Composite Laminate / Applied Sciences. 2019. Vol. 9. 5572. DOI: 10.3390/app9245572
15. Kaleel I., Petrolo M., Carrera E. Elastoplastic and progressive failure analysis of fiber-reinforced composites via an efficient nonlinear microscale model / Aerotecnica Missili & Spazio. 2018. Vol. 97. N 2. P. 103 – 110. DOI: 10.1007/BF03405805
16. Kathavate V. S., Dhanashri N. Pawar, Bagal N. S., Adkine A. S. Progressive Failure Analysis of Fiber Reinforced Polymer Matrix Composites / Materials Today: Proceedings. 2020. Vol. 22. P. 1524 – 1534. DOI: 10.1016/j.matpr.2020.02.070
17. Rozylo P., Ferdynus M., Debski H., Samborski S. Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally / Materials MDPI. 2020. Vol. 13. N 5. 1138. DOI: 10.3390/ma13051138
18. Wan L., Ismail Y., Sheng Y. H., et al. Progressive failure analysis of CFRP composite laminates under uniaxial tension using a discrete element method / J. Composite Mater. 2020. Vol. 55. P. 1091 – 1108. DOI: 10.1177/0021998320961460
19. Yi T. The Progressive Failure Analysis of Uni-Directional Fibre Reinforced Composite Laminates / Journal of Mechanics. 2020. Vol. 36. N 2. P. 159 – 166. DOI: 10.1017/jmech.2019.55
20. Makhutov N. A., Moskvichev V. V., Morozov E. V., Goldstein R. V. Unification of computation and experimental methods of testing for crack resistance: development of the fracture mechanics and new goals / Industr. Lab. Mater. Diagn. 2017. Vol. 83. N 10. P. 55 – 64 [in Russian]. DOI: 10.26896/1028-6861-2017-83-55-64
21. Kashtalyan M., Soutis C. Predicting residual stiffness of cracked composite laminates subjected to multi-axial inplane loading / J. Composite Mater. 2013. Vol. 47. P. 2513 – 2524. DOI: 10.1177/0021998313488809
22. Vasiliev V. V., Dudchenko A. A., Elpatievskii A. N. Analysis of the tensile deformation of glass-reinforced plastics / Polymer Mechanics. 1970. N 1. P. 144 – 146 [in Russian].
23. Applied Mechanics of Composites: Collection of articles / Tarnopolskii Yu. M. — Moscow: Mir, 1989. — 358 p. [in Russian].
24. Amelina E. V., Golushko S. K., Erasov V. S., et al. About nonlinear deformation of carbon fiber composites: experiment, model, calculation / Computing technologies. 2015. N 5. P. 27 – 52 [in Russian].
Review
For citations:
Polovyi A.O., Lisachenko N.G. Calculation of the stress-strain state of layers of cross-ply laminate based on an experimental stress-strain curves under uniaxial tension. Industrial laboratory. Diagnostics of materials. 2024;90(2):62-72. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-2-62-72