Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Мониторинг концентрации летучих органических соединений в мясе говядины после радиационной обработки ускоренными электронами

https://doi.org/10.26896/1028-6861-2024-90-3-12-23

Аннотация

В пищевых продуктах с высоким содержанием жира и воды, таких как охлажденные мясо и рыба, под действием ионизирующего излучения происходит окисление липидов и белков, что приводит к образованию в продукте летучих органических соединений (ЛОС) и появлению специфических запаха и вкуса. При хранении в обработанных охлажденных продуктах протекают различные биохимические процессы, которые также приводят к изменению содержания ЛОС, влияющих на органолептические показатели продукта. Методом газовой хромато-масс-спектрометрии изучено накопление летучих соединений, идентифицируемых в образцах говядины сразу после радиационной обработки и в течение четырех суток после облучения, в целях определения эффективного диапазона доз радиационной обработки говядины. Мониторинг содержания ЛОС в образцах охлажденного мяса говядины после облучения ускоренными электронами с энергией 1 МэВ в диапазоне доз от 0,25 до 5 кГр выявил явные зависимости концентраций некоторых спиртов, альдегидов и алканов от поглощенной дозы и времени хранения. Предложенная математическая модель, которая описывает зависимости концентраций ЛОС, идентифицированных сразу после облучения в образцах говядины, от дозы облучения, основана на одновременном протекании двух конкурирующих процессов: распада соединений за счет их окисления и накопления за счет окисления других соединений после воздействия ионизирующего излучения. По результатам исследования было установлено, что эффективный диапазон доз радиационной обработки составил от 250 до 1000 Гр.

Об авторах

В. С. Ипатова
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына
Россия

Виктория Сергеевна Ипатова

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 2



У. А. Близнюк
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына; Физический факультет Московского государственного университета имени М. В. Ломоносова
Россия

Ульяна Александровна Близнюк

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 2

 



П. Ю. Борщеговская
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына; Физический факультет Московского государственного университета имени М. В. Ломоносова
Россия

Полина Юрьевна Борщеговская

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 2



Т. А. Болотник
Химический факультет Московского государственного университета имени М. В. Ломоносова
Россия

Тимофей Александрович Болотник

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 3



А. Д. Никитченко
Физический факультет Московского государственного университета имени М. В. Ломоносова
Россия

Александр Денисович Никитченко

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 2



А. П. Черняев
Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына; Физический факультет Московского государственного университета имени М. В. Ломоносова
Россия

Александр Петрович Черняев

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 2



И. А. Родин
Физический факультет Московского государственного университета имени М. В. Ломоносова; Первый МГМУ имени И. М. Сеченова Минздрава России (Сеченовский Университет), кафедра эпидемиологии и доказательной медицины
Россия

Игорь Александрович Родин

119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 3

119435, Москва, ул. Б. Пироговская, д. 2, стр. 2



Список литературы

1. IAEA-TECDOC-2008. Development of Electron Beam and X-ray Applications for Food Irradiation. — Vienna: International Atomic Energy Agency, 2022. — 372 p.

2. State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. FAO, 2019. http://www.foa.org/3/ca603en/ca6030en.pdf (accessed December 1, 2023).

3. IAEA-TECDOC-1786. Radiation Technology for Cleaner Products and Processes: Proceedings of the Technical Meeting on Deployment of Clean (Green) Radiation Technology for Environmental Remediation. Vienna: International Atomic Energy Agency, 2016. — 246 p.

4. European Food Safety Authority. Statement Summarizing the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels / EFSA J. 2011. Vol. 9. N 4. 2107. DOI: 10.2903/j.efso.2011.2107

5. Sales L., Rodrigues L., Silva D., et al. Effect of freezing/irradiation/thawing processes and subsequent aging on tenderness, color, and oxidative properties of beef / Meat Sci. 2020. Vol. 163. 10878. DOI: 10.1016/j.meatsci.2020.108078

6. Leyva-Porras C., Roman Aguirre M., Cruz-Alcantar P., et al. Application of Antioxidants as an Alternative Improving of Shelf Life in Foods / Polysaccharides. 2021. Vol. 2. P. 594 – 607. DOI: 10.3390/polysaccharides2030036

7. Amit S. K., Uddin M. M., Rahman R., et al. A review on mechanisms and commercial aspects of food preservation and processing / Agric. Food Secur. 2017. Vol. 6. N 51. DOI: 10.1186/s40066-017-0130-8

8. Ravindran R., Jaiswal A. Wholesomeness and safety aspects of irradiated foods / Food Chem. 2019. Vol. 285. P. 363 – 368. DOI: 10.1016/j.foodchem.2019.02.002

9. Codex Alimentarius Commission. Guidelines for the Control of Campylobacter and Salmonella in Chicken Meat. FAO, 2011. http://files.foodmate.com/2013/files_1814.html (accessed December 1, 2023).

10. Bleicher J., Ebner E., Bak K. Formation and Analysis of Volatile and Odor Compounds in Meat — A Review / Molecules. 2022. Vol. 27. 6703. DOI: 10.3390/molecules27196703

11. Yaman S., Ayhanci A. Lipid Peroxidation. In the book: Accenting Lipid Peroxidation (Ed. by P. Atukeren). — UK: IntechOpen, 2021. P. 1 – 11. DOI: 10.5772/intechopen.95802

12. Nieminen T., Dalgaard P., Björkroth J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork / Int. J. Food Microbiol. 2016. Vol. 218. P. 86 – 95. DOI: 10.1016/j.ijfoodmicro.2015.11.003

13. D’Oca M., Bartolotta A., Cammilleri M., et al. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork / Radiat. Phys. Chem. 2009. Vol. 78. N 7 – 8. P. 687 – 689. DOI: 10.1016/j.radphyschem.2009.03.057

14. Bliznyuk U., Avdyukhina V., Borshchegovskaya P., et al. Determination of Chemical and Microbiological Characteristics of Meat Products Treated by Radiation / Inorg. Mater. 2022. Vol. 58. P. 1422 – 1428. DOI: 10.1134/S0020168522140047

15. Bliznyuk U., Borshchegovskaya P., Bolotnik T. A., et al. The impact of accelerated electrons on volatile organic compounds in poultry and fish / Ind. Lab. Mater. Diagn. 2023. Vol. 89. N 1. P. 11 – 19 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-11-19

16. Feng X., Jo C., Nam K., Ahn D. Impact of electron-beam irradiation on the quality characteristics of raw ground beef / Innovative Food Sci. Emerging Technol. 2019. Vol. 54. P. 87 – 92. DOI: 10.1016/j.ifset.2019.03.010

17. Bliznyuk U., Borchegovskaya P., Chernyaev A., et al. Computer simulation to determine food irradiation dose levels / IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 365. 012002. DOI: 10.1088/1755-1315/365/1/012002

18. Bliznyuk U., Borchegovskaya P., Chernyaev A., et al. Dose-rate effect of low-energy electron beam irradiation on bacterial content in chilled turkey / IOP Conf. Ser.: Earth Environ. Sci. 2020. Vol. 640.032006. DOI: 10.1088/1755-1315/640/3/032006

19. Lee D., Lee H., Yoon J., et al. Effect of Different Aging Methods on the Formation of Aroma Volatiles in Beef Strip Loins / Foods. 2021. Vol. 10. 146. DOI: 10.3390/foods10010146

20. Van H., Hwang I., Jeong D., Touseef A. Principle of Meat Aroma Flavors and Future Prospect. Chapter 7. Latest Research into Quality Control. — UK: IntechOpen, 2012. P. 145 – 176. DOI: 10.5772/51110

21. Brewer M. The Chemistry of Beef Flavor: Executive Summary. — USA: National Cattlemen’s Beef Association, 2006. — 16 p.

22. Zang M., Wang L., Zhang Z., et al. Comparison of Volatile Flavor Compounds from Seven Types of Spiced Beef by Headspace Solid-phase Microextraction Combined with Gas Chromatography-olfactometry-mass Spectrometry (HS-SPME-GC-O-MS) / Food Sci. Technol. Res. 2020. Vol. 26. P. 25 – 37. DOI: 10.3136/fstr.26.25

23. Tao N., Wu R., Zhou P., et al. Characterization of odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus) using gas chromatography-mass spectrometry-olfactometry / J. Food Drug Anal. 2014. Vol. 22. P. 431 – 438. DOI: 10.1016/j.jfda.2014.02.005

24. Pavan E., Ye Y., Eyres G., et al. Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins / Foods. 2021. Vol. 10. 1143. DOI: 10.3390/foods10051143

25. Jung S., Jo C., Kim I., et. al. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty / Korean J. Food Sci. Anim. Resour., 2014. Vol. 34. P. 166 – 171. DOI: 10.5851/kosfa.2014.34.2.166

26. Damian F., Hughes J., Piyasiri U., et al. Volatile and non-volatile metabolite changes in 140-day stored vacuum packaged chilled beef and potential shelf life markers / Meat Sci. 2020. Vol. 161. 108016. DOI: 10.1016/j.meatsci.2019.108016

27. Brewer M. Irradiation effects on meat flavor: A review / Meat Sci. 2009. Vol. 81. P. 1 – 14. DOI: 10.1016/j.meatsci.2008.07.011

28. Hunt M., Legako J., Dinh T., et al. Assessment of volatile compounds, neutral and polar lipid fatty acids of four beef muscles from USDA Choice and Select graded carcasses and their relationships with consumer palatability scores and intramuscular fat content / Meat Sci. 2016. Vol. 116. P. 91 – 101. DOI: 10.1016/j.meatsci.2016.02.010

29. Resconi V., del Mar Campo M., Montossi F., et al. Gas chromatographic-olfactometric aroma profile and quantitative analysis of volatile carbonyls of grilled beef from different finishing feed systems / J. Food Sci. 2012. Vol. 77. P. 240 – 246. DOI: 10.1111/j.1750-3841.2012.02720.x

30. Li C., He L., Jin G., et al. Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage / Meat Sci. 2017. Vol. 128. P. 68 – 76. DOI: 10.1016/j.meatsci.2017.02.009

31. Feng X., Ahn D. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products / Radiat. Phys. Chem. 2016. Vol. 127. P. 27 – 33. DOI: 10.1016/j.radphyschem.2016.05.027

32. Bliznyuk U., Borshchegovskaya P., Bolotnik T., et al. Research into Gas Chromatography-Mass Spectrometry (GC-MS) for Ensuring the Effect of 1 MeV-Accelerated Electrons on Volatile Organic Compounds in Turkey Meat / Separations. 2022. Vol. 9. 227. DOI: 10.3390/separations9080227

33. Huang Q., Dong K., Wang Q., et al. Changes in volatile flavor of yak meat during oxidation based on multi-omics / Food Chem. 2022. Vol. 371. 131103. DOI: 10.1016/j.foodchem.2021.131103

34. Dominguez R., Purrinos L., Perez-Santaescolastica C., et al. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique / Food Anal. Methods. 2019. Vol. 12. P. 1263 – 1284. DOI: 10.1007/s12161-019-01491-x

35. Dinh T., To K., Schilling M. Fatty Acid Composition of Meat Animals as Flavor Precursors / Meat Muscle Biol. 2021. Vol. 5. P. 1 – 16. DOI: 10.22175/mmb.12251

36. Ba H., Park K., Dashmaa D., Hwang I. Effect of muscle type and vacuum chiller ageing period on the chemical compositions, meat quality, sensory attributes and volatile compounds of Korean native cattle beef / Anim. Sci. J. 2014. Vol. 85. P. 164 – 173. DOI: 10.1111/asj.12100

37. Shahidi F. Headspace Volatile Aldehydes as Indicators of Lipid Oxidation in Foods. In the book: Headspace Analysis of Foods and Flavors (Ed. by R. L. Rouseff, K. R. Cadwallader. 2019. Vol. 488. P. 113 – 123. DOI: 10.1007/978-1-4615-1247-9

38. Kim Y., Kemp R., Samuelsson L. Effects of dry aging on meat quality attributes and metabolite profiles of beef loins / Meat Sci. 2016. Vol. 111. P. 168 – 176. DOI: 10.1016/j.meatsci.2015.09.008

39. Frank D., Ball A., Hughes J., et al. Sensory and flavor chemistry characteristics of Australian beef: influence of intramuscular fat, feed, and breed / J. Agric. Food Chem. 2016. Vol. 64. P. 4299 – 4311. DOI: 10.1021/acs.jafc.6b00160

40. Kim Y., Nam K., Ahn D. Volatile profiles, lipid oxidation and sensory characteristics of irradiated meat from different animal species / Meat Sci. 2002. Vol. 61. P. 257 – 265. DOI: 10.1016/S0309-1740(01)00191-7

41. Li Z., Ha M., Frank D., et al. Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking / Foods. 2021. Vol. 10. 3113. DOI: 10.3390/foods10123113

42. Wang X., Ma Y., Guo Y., et al. Reinvestigation of 2-acetylthiazole formation pathways in the Maillard reaction / Food Chem. 2021. Vol. 345. 128761. DOI: 10.1016/j.foodchem.2020.128761

43. Legako J., Cramer T., Yardley K., et al. Retail stability of three beef muscles from grass-, legume-, and feedlot-finished cattle / J. Anim. Sci. 2018. Vol. 96. P. 2238 – 2248. DOI: 10.1093/jas/sky125

44. Chen Q., Liu Q., Sun Q., et al. Flavour formation from hydrolysis of pork sarcoplasmic protein extract by a unique LAB culture isolated from Harbin dry sausage / Meat Sci. 2015. Vol. 100. P. 110 – 117. DOI: 10.1016/j.meatsci.2014.10.001

45. Wang Y., Han J., Wang D., et al. Research Update on the Impact of Lactic Acid Bacteria on the Substance Metabolism, Flavor, and Quality Characteristics of Fermented Meat Products / Foods. 2022. Vol. 11. 2090. DOI: 10.3390/foods11142090

46. Sirtori F., Dimauro C., Bozzi R., et al. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product / Eur. Food Res. Technol. 2019. Vol. 246. P. 409 – 424. DOI: 10.1007/s00217-019-03410-0

47. Jin Y., Yuan X., Liu J., et al. Inhibition of cholesterol biosynthesis promotes the production of 1-octen-3-ol through mevalonic acid / Food Res. Int. 2022. Vol. 158. P. 111392. DOI: 10.1016/j.foodres.2022.111392

48. Karabagias I. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1°C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality / Foods. 2018. Vol. 7. 40. DOI: 10.3390/foods7030040

49. Tangerman A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices / J. Chromatogr. A. 2009. Vol. 877. P. 3366 – 3377. DOI: 10.1016/j.jchromb.2009.05.026

50. Franke C., Hilgarth M., Vogel R. F., et al. Characterization of the dynamics of volatile organic compounds released by lactic acid bacteria on modified atmosphere packed beef by PTR-MS / Food Packag. Shelf Life. 2019. Vol. 22. 100400. DOI: 10.1016/j.fpsl.2019.100400


Рецензия

Для цитирования:


Ипатова В.С., Близнюк У.А., Борщеговская П.Ю., Болотник Т.А., Никитченко А.Д., Черняев А.П., Родин И.А. Мониторинг концентрации летучих органических соединений в мясе говядины после радиационной обработки ускоренными электронами. Заводская лаборатория. Диагностика материалов. 2024;90(3):12-23. https://doi.org/10.26896/1028-6861-2024-90-3-12-23

For citation:


Ipatova V.S., Bliznyuk U.A., Borshchegovskaya P.Yu., Bolotnik T.A., Nikitchenko A.D., Chernyaev A.P., Rodin I.A. Monitoring of changes in the concentration of volatile organic compound in beef irradiated with accelerated electrons. Industrial laboratory. Diagnostics of materials. 2024;90(3):12-23. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-3-12-23

Просмотров: 308


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)