

The effect of magnetic nanoparticles and cetylpyridinium chloride on the electroanalytical properties of planar sensors sensitive to cefuroxime and cefotaxime
https://doi.org/10.26896/1028-6861-2024-90-4-5-11
Abstract
Planar screen-printed potentiometric sensors sensitive to cephalosporin antibiotics cefuroxime (Cefur) and cefotaxime (Ceftx) has been developed. Cefotaxime is an amphoteric antibiotic with carboxyl and aminothiazole groups (third generation), cefuroxime is an acidic antibiotic of the second generation. Tetradecylammonium associates with complex compounds silver (I)-cefuroxime (cefotaxime) were used as electrode-active components (EAC). The linearity intervals of the electrode functions for unmodified sensors are 1 × 10–5 (1 × 10–4) – 1 × 10–2 M, angular coefficients 46 ± 6 mV/pC, response time 40 sec. The role of magnetic nanoparticles Fe3O4 and cetylpyridinium chloride (CPCh) in improving the electroanalytical properties of sensors in aqueous of cefuroxime and cefotaxime is shown. Optimal ratios of modifiers in carbon-containing inks (Fe3O4:CPCh = 1:2.5) were found. The main electroanalytical characteristics of the sensors are determined. The introduction of a binary mixture of magnetic nanoparticles and cetylpyridinium chloride into carbon-containing inks leads to an improvement in the electroanalytical properties of planar sensors sensitive to cefuroxime and cefotaxime: at the same time, the detection limit of 1 × 10–6 (1 × 10–7 M) decreases, angular coefficients (55 ± 3 mV/pC) and linearity intervals of the electrode functions (1 × 10–6 – 1 × 10–2 M), response time 26 – 30 sec. The adsorption of surfactants at the interface ensures the stability of the suspension of nanoparticles and allows the concentration of analyte molecules. Electrostatic and hydrophobic interactions of surfactants increase the solubility of organic compounds. The use of modified screen-printed sensors for the determination of cefuroxime and cefotaxime in medicinal preparations and model aqueous with added antibiotics is shown.
About the Authors
E. G. KulapinaRussian Federation
Elena G. Kulapina,
83, ul. Astrakhanskya, Saratov, 410012.
R. K. Mursalov
Russian Federation
Ruslan K. Mursalov,
83, ul. Astrakhanskya, Saratov, 410012.
O. I. Kulapina
Russian Federation
Olga I. Kulapina,
112, ul. Bolshaya Kazach’ya, Saratov, 410012.
References
1. Mashkovsky M. D. Medicines. — Moscow: Novaya volna, 2021. — 1216 p. [in Russian].
2. Kryuk T. V., Tyurina T. G., Kudryavtseva T. A. Spectrophotometric determination of cephalosporin antibiotics of the third generation by reaction with Cu (II) / Vestn. DonNU. Ser. A. Estestv. Nauki. 2021. N 1. P. 78 – 82 [in Russian].
3. Sharaf Y. A., Ibrahim A. E., El Deeb S., Sayed R. A. Green chemometric determination of cefotaxime sodium in the presence of its degradation impurities using different multivariate data processing tools; GAPI and AGREE greenness evaluation / Molecules. 2023. Vol. 28. N 5. P. 2187 – 2204. DOI: 10.3390/molecules28052187
4. Humeidy I. T. Spectrophotometric determination of cefotaxime sodium in pharmaceutical formulations / Mater. Today: Proc. 2021. Vol. 47. Part 17. P. 6043 – 6049. DOI: 10.1016/j.matpr.2021.05.004
5. Nayif S., Alhabbo D. Indirect spectrophotometric determination of cefotaxime using N-bromosuccinimide and crystal violet dye / AIP Conf. Proc. 2023. Vol. 2414. N 1. 050043. DOI: 10.1063/5.0118286
6. Abood N. K. New spectroscopic estimation of cefotaxime in pure and pharmaceutical formulation using environmental-friendly method / J. Phys.: Conf. Ser. 2021. Vol. 1853. N 1. 012023. DOI: 10.1088/1742-6596/1853/1/012023
7. Mahrouse M. A., Elwy H. M., Salem E. M. Simultaneous determination of cefixime and erdosteine in combined dosage form using validated spectrophotometric methods / Spectrochim Acta, Part A. 2020. Vol. 241. 118647. DOI: 10.1016/j.saa.2020.118647
8. Basavaraj H., Mruthyunjayaswamy B. H. M. An experimental design approach for validation and optimisation of spectrophotometric determination of cefixime in pharmaceutical dosage form / Indian J. Pharm. Sci. 2022. Vol. 84. N 1. P. 115 – 120. DOI: 10.36468/pharmaceutical-sciences.902
9. Abood N. K., Hassan M. J. M., AL-Da’amy M. A. Determination of cefixime using batch, cloud point extraction and flow injection as new spectrophotometric methods / Al-Mustansiriyah J. Sci. 2019. Vol. 30. N 3. P. 28 – 37. DOI: 10.23851/mjs.v30i3.648
10. Al-Hakkani M. F. HPLC analytical method validation for determination of cefotaxime in the bulk and finished pharmaceutical dosage form / SCE. 2020. Vol. 1. N 1. P. 33 – 42. DOI: 10.37256/sce.112020199.33-42
11. Anwer E. T., Porwal O., Dudhe R. Development and validation of RP-HPLC method for estimation of cefotaxime sodium in bulk and formulation / Res. J. Pharm. Technol. 2022. Vol. 15. N 7. P. 3114 – 3118. DOI: 10.52711/0974-360X.2022.00521
12. Nepal U., Panthi V. K., Chaudhary N. P., Chaudhary S. A Validated RP-HPLC method for simultaneous determination of cefixime and clavulanic acid powder in pediatric oral suspension / Int. J. Anal. Chem. 2022. Vol. 2022. N 4. P. 1 – 10. DOI: 10.1155/2022/8331762
13. Reçber T., Özkan E., Nemutlu E., Kir S. Simultaneous determination of cefixime, cefdinir and clavulanic acid by high performance liquid chromatography / Pharm. Chem. J. 2021. Vol. 54. N 11. P. 1186 – 1191. DOI: 10.1007/s11094-021-02341-z
14. Bellouard R., Deslandes G., Morival C., et al. Simultaneous determination of eight β-lactam antibiotics in human plasma and cerebrospinal fluid by liquid chromatography coupled to tandem mass spectrometry / J. Pharm. Biomed. Anal. 2020. Vol. 178. 112904. DOI: 10.1016/j.jpba.2019.112904
15. Magréault S., Leroux S., Touati J., et al. UPLC/MS/MS assay for the simultaneous determination of seven antibiotics in human serum — Application to pediatric studies / J. Pharm. Biomed. Anal. 2019. Vol. 174. P. 256 – 262. DOI: 10.1016/j.jpba.2019.03.004
16. Zyablov A. N., Shapovalova A. A. Determination of the residual amounts of cefotaxime in liquid media using piezoelectric sensors / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 2. P. 15 – 20 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-15-20
17. Shapovalova A. A., Zyablov A. N. Identification of cefazoline and cefatoxime in liquid media using modified piezoelectric sensors / Sorbts. Khromatogr. Prots. 2021. Vol. 21. N 5. P. 755 – 763 [in Russian]. DOI: 10.17308/sorpchrom.2021.21/3782
18. Kulapina E. G., Kulapina O. I., Ankina V. D. Screen-printed potentiometric sensors based on carbon materials for determining cefotaxime and cefuroxime / J. Anal. Chem. 2020. Vol. 75. N 2. P. 231 – 237. DOI: 10.1134/S1061934820020100
19. Kulapina E. G., Tyutlikova M. S., Kulapina O. I., Dubasova A. E. Solid-contact potentiometric sensors for the determination of some cephalosporin antibiotics in pharmaceuticals and oral fluid / J. Anal. Chem. 2019. Vol. 74. N 1. S52 – S58. DOI: 10.1134/S1061934819070128
20. Saleh G. A., Badr I. H. A., Nour El-Deen D. A. M., Derayea S. M. Novel potentiometric sensor for the selective determination of cefotaxime sodium and its application to pharmaceutical analysis / IEEE Sensors J. 2020. Vol. 20. N 7. P. 3415 – 3422. DOI: 10.1109/jsen.2019.2960034
21. Duan M., He X., Zhang Q., Zheng B. A highly sensitive cefotaxime electrochemical detection technique based on graphene quantum dots / Int. J. Electrochem. Sci. 2022. Vol. 17. N 7. 220729. DOI: 10.20964/2022.07.06
22. Darabi R., Shabani-Nooshabadi M. Development of an amplified nanostructured electrochemical sensor for the detection of cefixime in pharmaceuticals and biological samples / J. Pharm Biomed Anal. 2022. Vol. 212. 114657. DOI: 10.1016/j.jpba.2022.114657
23. Shawky A. M., El-Tohamy M. F. Highly functionalized modified metal oxides polymeric sensors for potentiometric determination of letrozole in commercial oral tablets and biosamples / Polymers. 2021. Vol. 13. N 9. P. 1384 – 1401. DOI: 10.3390/polym13091384
24. Shabani R., Rizi Z. L., Moosavi R. Selective potentiometric sensor for isoniazid ultra-trace determination based on Fe3O4 nanoparticles modified carbon paste electrode (Fe3O4/CPE) / Int. J. Nanosci. Nanotechnol. 2018. Vol. 14. N 3. P. 241 – 249.
25. Ziyatdinova G. K., Zhupanova A. S., Budnikov G. K. Electrochemical sensors for the simultaneous detection of phenolic antioxidants / J. Anal. Chem. 2022. Vol. 77. N 2. P. 155 – 172. DOI: 10.1134/S1061934822020125
26. Ziyatdinova G. K., Zakharova S. P., Ziganshina E. R., Budnikov G. K. Voltammetric determination of flavonoids in medical plant materials using electrodes modified by cerium dioxide nanoparticles and surfactants / J. Anal. Chem. 2019. Vol. 74. N 8. P. 816 – 824. DOI: 10.1134/S106193481908015X
27. Unal D. N., Yıldırım S., Kurbanoglu S., Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing / TrAC. 2021. Vol. 144. 116418. DOI: 10.1016/j.trac.2021.116418
28. Gowda J. I., Hanabaratti R., Tuwar S. MWCNT modified glassy carbon electrode in presence of cationic surfactant for the electro-analysis of paclitaxel / Results Chem. 2021. Vol. 3. N 4. 100243. DOI: 10.1016/j.rechem.2021.100243
29. Tigari G., Manjunatha J. G. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin / J. Sci: Adv. Mater. Dev. 2020. Vol. 5. N 1. P. 56 – 64. DOI: 10.1016/j.jsamd.2019.11.001
30. Uppachai P., Srijaranai S., Poosittisak S., et al. Supramolecular electrochemical sensor for dopamine detection based on self-assembled mixed surfactants on gold nanoparticles deposited graphene oxide / Molecules. 2020. Vol. 25. N 11. 2528. DOI: 10.3390/molecules25112528
31. Hareesha N., Manjunatha J. G. Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin / Mater. Res. Innovations. 2020. Vol. 24. N 6. P. 349 – 362. DOI: 10.1080/14328917.2019.1684657
32. Manjunatha J. G. A surfactant enhanced graphene paste electrode as an effective electrochemical sensor for the sensitive and simultaneous determination of catechol and resorcinol / Chem. Data Coll. 2020. Vol. 25. 100331. DOI: 10.1016/j.cdc.2019.100331
33. Patil V. B., Malode S., Suresh M., et al. Graphene sheet-based electrochemical sensor with cationic surfactant for sensitive detection of atorvastatin / Sensors International. 2022. Vol. 3. N 11. 100198. DOI: 10.1016/j.sintl.2022.100198
34. Congur G., Dudu Gül Ü. Phenol monitoring in water samples using an inexpensive electrochemical sensor based on pencil electrodes modified with DTAB surfactant / J. Environ. Chem. Eng. 2021. Vol. 9. N 3. 105804. DOI: 10.1016/j.jece.2021.105804
35. Patil V. B. Ilager D. Tuwar S., et al. Nanostructured ZnO-based electrochemical sensor with anionic surfactant for the electroanalysis of trimethoprim / Bioengineering. 2022. Vol. 9. N 10. 521. DOI: 10.3390/bioengineering9100521
36. Veseli A., Mullallari F., Balidemaj F., et al. Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes / Microchem. J. 2019. Vol. 148. P. 412 – 418. DOI: 10.1016/j.microc.2019.04.086
37. Prinith N. S., Manjunatha J. G. Surfactant modified electrochemical sensor for determination of anthrone — a cyclic voltammetry / Mater. Sci. Technol. 2019. Vol 2. N 3. P. 408 – 416. DOI: 10.1016/j.mset.2019.05.004
38. Ziyatdinova G., Ziganshina E., Budnikov H. Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants / Electrochim. Acta. 2014. Vol. 145. P. 209 – 216. DOI: 10.1016/j.electacta.2014.08.062
39. Ali T. A., Abd-Elaal A. A., Mohamed G. G. Screen-printed ion selective electrodes based on self-assembled thiol surfactant-gold-nanoparticles for determination of Cu (II) in different water samples / Microchem. J. 2021. Vol. 160. 105693. DOI: 10.1016/j.microc.2020.105693
40. Tigari G., Manjunatha J. G., Raril C., Hareesha N. Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant / ChemistrySelect. 2019. Vol. 4. N 7. P. 2168 – 2173. DOI: 10.1002/slct.201803191
41. Raril C., Manjunatha J. G. A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode / Microchem. J. 2020. Vol. 154. 104575. DOI: 10.1016/j.microc.2019.104575
42. Pushpanjali P. A., Manjunatha J. G., Shreenivas M. T. The electrochemical resolution of ciprofloxacin, riboflavin and estriol using anionic surfactant and polymer-modified carbon paste electrode / ChemistrySelect. 2019. Vol. 4. P. 13427 – 13433. DOI: 10.1002/slct.201903897
43. Kulapina E. G., Mursalov R. K., Kulapina O. I., et al. Modified planar sensors for cefepime determination / Industr. Mater. Diagn. 2023. Vol. 89. N 3. P. 5 – 13 [in Russian]. DOI: 10.26896/1028-6861-2023-89-3-5-13
44. Alekseev V. G. Bioinorganic chemistry of penicillins and cephalosporins. — Tver’: Izd. TGU, 2009. — 104 p. [in Russian].
45. Budnikov G. K., Yevtyugin G. A., Maistrenko V. N. Modified electrodes in chemistry, biology, medicine. — Moscow: Binom, 2009. — 331 p. [in Russian].
Review
For citations:
Kulapina E.G., Mursalov R.K., Kulapina O.I. The effect of magnetic nanoparticles and cetylpyridinium chloride on the electroanalytical properties of planar sensors sensitive to cefuroxime and cefotaxime. Industrial laboratory. Diagnostics of materials. 2024;90(4):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-4-5-11