

Determination of strategic metals in graphitic formations by the methods of neutron activation analysis with a californium source
https://doi.org/10.26896/1028-6861-2024-90-4-19-30
Abstract
The content of a number of strategic metals (Au, Sc, La, Sm, Eu, Dy) at the level comparable to their average contents in graphite-bearing rocks of the south of the Russian Far East was determined by the method of instrumental neutron activation analysis (INAA) on an original device with a radionuclide neutron source based on 252Cf. A key advantage of INAA in analysis of difficult-to-dissolve carbon-containing materials is a non-destructive character of the method. The proposed methodological approach avoids the complex procedure of sample decomposition, analyte separation and associated problems (dissolution, contamination and losses). It is shown that there is no significant influence of carbon contained in the sample on the INAA results when up to 300 cm3 of sample containing at least 87 %wt. of carbon are introduced into the activation zone. The detection limit of the method was calculated for a number of the determined elements. The possibility of determining the content of Sc, La, Sm, Eu, and Dy in natural high-carbon objects below the clarke level was confirmed. The absence of any significant dependence of the INAA results on the density and coarseness of the studied samples was revealed. The results of determining strategic metals in graphite-bearing metamorphic rocks of the south of the Russian Far East were compared for two different INAA options (reactor and with 252Cf radionuclide source). The comparison showed that data obtained at the device with the radionuclide source 252Cf for most of the elements under study match the results obtained earlier on a WWR-M reactor at the St. Petersburg Institute of Nuclear Physics named after B. P. Konstantinov. At the same time, the possibility to irradiate samples of 50 – 100 cm3 ensures high representativeness of the sample when activated with the 252Cf isotope. The INAA method with radionuclide source 252Cf is suitable for the analysis of carbon-containing materials for trace elements, the determination of which is difficult due to complex sample preparation, analyte separation and other related problems.
About the Authors
S. I. IvannikovRussian Federation
Sergei I. Ivannikov,
159, 100-letya Vladivostoka prosp., Vladivostok, 690022.
V. V. Ivanov
Russian Federation
Vladimir V. Ivanov,
159, 100-letya Vladivostoka prosp., Vladivostok, 690022.
N. S. Markin
Russian Federation
Nikita S. Markin,
159, 100-letya Vladivostoka prosp., Vladivostok, 690022.
A. V. Ruslan
Russian Federation
Alexey V. Ruslan,
159, 100-letya Vladivostoka prosp., Vladivostok, 690022.
L. A. Zemskova
Russian Federation
Larisa A. Zemskova,
159, 100-letya Vladivostoka prosp., Vladivostok, 690022.
References
1. Hu Y., You M., Liu G., et al. The potential utilizing of critical element from coal and combustion residues / Energies. 2021. Vol. 14. N 15. P. 4710. DOI: 10.3390/en14154710
2. Wu Y. F., Evans K., Fisher L. A., et al. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system / Geochim. Cosmochim. Acta. 2020. Vol. 276. P. 345 – 362. DOI: 10.1016/j.gca.2020.03.006
3. Shepel E. V., Ayupova N. R., Rassomakhin M. A., Khvorov P. V. Thorium, uranium and rare earth mineralization in rocks of the Ugakhan gold deposit, Bodaibo ore region / Mineralogy. 2021. Vol. 7. N 3. P. 78 – 93. [in Russian]. DOI: 10.35597/2313-545X-2021-7-3-5
4. Lapidus A. L., Khudyakov D. S., Beilina N. Y., et al. Solid fossil fuels as a source of trace elements / Solid Fuel Chem. 2022. Vol. 56. N 1. P. 1 – 14. DOI: 10.31857/S0023117722010030
5. Khanchuk A. I., Plyusnina L. P., Ruslan A. V. New genetic type of gold mineralization in graphite-bearing rocks of Primorye / Proc. of the international conf. «Gold of the Fennoscandinavian Shield», Petrozavodsk, Karelian Scientific Center of RAS, 2013. P. 176 – 179 [in Russian].
6. Shevelev G. A., Vasilenko L. I., Kamenskaya E. N., et al. Noble and rare metals in some coal deposits of Kazakhstan / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 1. Part II. P. 38 – 44 [in Russian]. DOI: 10.26896/1028-6861-2019-85-1-II-38-44
7. Vyalov V. I., Kuzevanova E. V., Nelyubov P. A., et al. Rare-metal-coal deposits of Primorye / Razvedka Okhrana Nedr. 2010. N 12. P. 53 – 57 [in Russian].
8. Khanchuk A. I., Plyusnina L. P., Ruslan A. V., et al. Nature of graphitization and noble metal mineralization in metamorphic rocks of the northern Khanka Terrane, Primorye / Geol. Ore Deposits. 2013. Vol. 55. P. 225 – 244. DOI: 10.1134/S1075701513040041
9. Eskina V. V., Dalnova O. A., Tursunov L. Kh., et al. Determination of Sodium in High-Purity Graphite by High Resolution Continuum Source Electro-Thermal Atomic Absorption Spectrometry (HRCS-ETAAS) / Industr. Lab. Mater. Diagn. 2016. Vol. 82. N 1. P. 5 – 7 [in Russian].
10. Seredin V. V. Distribution and formation conditions of noble metal mineralization in coal-bearing basins / Geol. Ore Deposits. 2007. Vol. 49. P. 1 – 30. DOI: 10.1134/S1075701507010011
11. Pinto F. G., Junior R. E., Saint’Pierre T. D. Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review / Anal. Lett. 2012. Vol. 45. N 12. P. 1537 – 1556. DOI: 10.1080/00032719.2012.677778
12. Silachyov I. Yu. Combination of instrumental neutron activation analysis with x-ray fluorescence spectrometry for the determination of rare-earth elements in geological samples / J. Anal. Chem. 2020. Vol. 75. N 7. P. 878 – 889. DOI: 10.1134/S106193482007014X
13. Liu Y., Wan B., Xue D. Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks / Molecules. 2019. Vol. 24. N 9. P. 1778. DOI: 10.3390/molecules24091778
14. Cui T., Yu M., Yang Y. The epithermal neutron activation analysis of mineral ores driven by an electron linear accelerator-based photoneutron source / Nucl. Instrum. Methods Phys. Res., Sect. A. 2023. Vol. 1048. P. 167878. DOI: 10.1016/j.nima.2022.167878
15. Das D. D., Sharma N., Chawla P. A. Neutron activation analysis: An excellent nondestructive analytical technique for trace metal analysis / Crit. Rev. Anal. Chem. 2023. DOI: 10.1080/10408347.2023.2178841
16. Kanwar V. S., Sharma A., Srivastav A. L., Rani L. Phytoremediation of toxic metals present in soil and water environment: a critical review / Environ. Sci. Pollut. Res. 2020. Vol. 27. P. 44835 – 44860. DOI: 10.1007/s11356-020-10713-3
17. Ahmed M. E., Bounouira H., Abbo M. A., et al. Utilizing the k0-IAEA program to determine rare earth elements in soil samples from gold-mining areas in Sudan / J. Radioanal. Nucl. Chem. 2023. Vol. 332. N 6. P. 1707 – 1721. DOI: 10.1007/s10967-023-08886-5
18. Begum M., Khan R., Roy D. K., et al. Geochemical characterization of Miocene core sediments from Shahbazpur gas-wells (Bangladesh) in terms of elemental abundances by Instrumental Neutron Activation Analysis / J. Radioanal. Nucl. Chem. 2021. Vol. 329. N 1. P. 239 – 252. DOI: 10.1007/s10967-021-07770-4
19. Attallah M. F., Abdou F. S., Aly H. F. Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis / Radiochim. Acta. 2021. Vol. 109. N 3. P. 225 – 232. DOI: 10.1515/ract-2020-0101
20. Khan R., Mohanty S., Sengupta D. Elemental distribution in core sediments of Podampata coast, eastern Odisha, India: potentiality of rare earth elements and Th exploration / Arabian J. Geosci. 2021. Vol. 14. P. 1 – 11. DOI: 10.1007/s12517-020-06371-x
21. Fungaro D. A., Silva P. S. C., Izidoro J. C., Hower J. C. Trace elements in coal, coal combustion products and soil from coal-fired power plant area evaluated by neutron activation analysis / J. Phys. Chem. Res. 2021. Vol. 3. N 1. P. 1 – 7. DOI: 10.36266/JPCR/130
22. Samanta S. K. Sengupta A., Acharya R., Pujari P. K. Standardization and validation of k0-based Neutron Activation Analysis using Apsara-U reactor and its application to pure iron metal and coal sample for trace element determination / Nucl. Instrum. Methods Phys. Res., Sect. A. 2021. Vol. 1018. P. 165856. DOI: 10.1016/j.nima.2021.165856
23. Mhlongo S., Buffler A., Hutton T., Ndabeni Z. A multimodal neutron-based technique for the elemental analysis of materials in bulk / J. Phys.: Conf. Ser. 2023. Vol. 2586. N 1. P. 012126. DOI: 10.1088/1742-6596/2586/1/012126
24. Ghosh M., Chavan T. A., Reddy G. L. N., et al. Determination of Impurities in Graphite Using Proton Induced Gamma Ray Emission, Total Reflection X-ray Fluorescence and Instrumental Neutron Activation Analysis / Anal. Chem. Lett. 2022. Vol. 12. N 4. P. 437 – 450. DOI: 10.1080/22297928.2022.2108722
25. Munita C. S., Glascock M. D., Hazenfratz R. Neutron activation analysis: an overview. In the book: Recent advances in analytical techniques. Vol. 3. (Ed. by Atta-ur-Rahman, S. A. Ozkan). — Bentham Science Publishers, 2019. P. 179 – 227.
26. Muzafarov A. M., Mustafoev M. A., Kulmatov R. A., Sharafutdinov U. Z. Instrumental neutron activation analysis of gold and associated elements in ion-exchange resins / MIAB. Mining Inf. Anal. Bull. 2021. N 3 – 1. P. 110 – 118 [in Russian]. DOI: 10.25018/0236_1493_2021_31_0_110
27. Ivannikov S., Markin N., Golub A., Zheleznov V. Determination of uranium-238 in solid materials of various compositions by instrumental neutron activation analysis with a radionuclide neutron source based on Cf-252 / J. Radioanal. Nucl. Chem. 2023. Vol. 332. N 9. P. 3753 – 3761. DOI: 10.1007/s10967-023-09076-z
28. The NDC k0-database 2015. Web site of the k0-International scientific committee. http://www.kayzero.com/k0naa/k0naaorg/ Links.html (accessed December 17, 2023).
29. Smagunova A. N., Karpukova O. M. Methods of mathematical statistics in analytical chemistry. — Moscow: Yurait, 2023. — 364 p. [in Russian].
30. Strogov Yu. V. Fundamentals of neutron physics: textbook. — Moscow: Izd. MIFI, 2008. — 204 p. [in Russian].
31. Kuselman I., Fajgelj A. IUPAC/CITAC Guide: Selection and use of proficiency testing schemes for a limited number of participants — chemical analytical laboratories (IUPAC Technical Report) / Pure Appl. Chem. 2010. Vol. 82. N 5. P. 1099 – 1135. DOI: 10.1351/PAC-REP-09-08-15
32. Ketris M. P., Yudovich Y. E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals / Int. J. Coal Geol. 2009. Vol. 78. N 2. P. 135 – 148. DOI: 10.1016/j.coal.2009.01.002
33. Rudnick R. L., Gao S. Composition of the continental crust / Treatise Geochem. 2nd edition. 2005. Vol. 4. P. 1 – 51. DOI: 10.1016/B978-0-08-095975-7.00301-6
34. Khanchuk A. I., Molchanov V. P., Androsov D. V. First Data on Noble Metal-Rare Earth Mineralization in Graphite-Bearing Rocks of the Northern Margin of the Khanka Terrain / Dokl. Earth Sciences. 2018. Vol. 482. P. 1362 – 1364. DOI: 10.1134/S1028334X18100239
35. Zinoviev V. G., Mitropolsky I. A., Okunev I. S., Shulyak G. I. Studies of gold mineralization in carbonaceous rocks by the method of instrumental neutron activation analysis (INAA) in PNPI / Proc. International Conference «Gold of the Fennoscandinavian shield», Petrozavodsk, Karelian Scientific Center of RAS, 2013. P. 163 [in Russian].
Review
For citations:
Ivannikov S.I., Ivanov V.V., Markin N.S., Ruslan A.V., Zemskova L.A. Determination of strategic metals in graphitic formations by the methods of neutron activation analysis with a californium source. Industrial laboratory. Diagnostics of materials. 2024;90(4):19-30. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-4-19-30