

Root cause analysis of the brittle fracture of pipes of boiler heating surfaces after long-term operation
https://doi.org/10.26896/1028-6861-2024-90-4-53-65
Abstract
Research into the causes of failure of power equipment is necessary to eliminate or restrict their impact, as well as to develop and improve technical diagnostic methods. The last reason is especially important, since accidents or unscheduled shutdowns of power equipment result in serious damage to the economy. Standard methods of technical diagnostics used to assess the residual life of the equipment include mechanical tests of the samples cut from parts of the equipment, determination of their chemical composition, structural studies and fractography of metal fractures. The danger of hydrogen embrittlement in metals is well known. Presence of the areas of brittle fracture or facets is usually associated with hydrogen-induced fracture or hydrogen embrittlement. Direct measurements of the concentration of hydrogen dissolved in metal samples are beyond the scope of regulatory requirements, thus making quantification of the development of hydrogen embrittlement rather difficult. We have shown that technical diagnostics of the pipes of heating surfaces of boiler equipment necessitates additional approaches to the evaluation of hydrogen embrittlement. Hydrogen accumulation during operation may not show visible signs of corrosion or structural changes. It is shown that hydrogen and external thermomechanical load induce the anisotropy in the mechanical and structural properties of the pipe steels. As a result, the nature of the destruction of samples cut from pipe walls depends on the orientation of the test loads relative to the main axes of the stress tensor of operational (working) loads. Experimental data obtained indicate that when determining the causes of accidents and examining heat exchangers to assess their residual life, it is necessary to measure the distribution of the concentration of dissolved hydrogen in the metal and to carry out mechanical tests of ring samples.
About the Authors
A. V. NechaevaRussian Federation
Anna V. Nechaeva,
9, Pushkarskii per., St. Petersburg, 197101.
V. A. Polyanskiy
Russian Federation
Vladimir A. Polyanskiy,
61, Bolshoi pr., Vasilevskii ostrov, St. Petersburg, 199178.
A. M. Polyanskiy
Russian Federation
Anatoliy M. Polyanskiy,
29, Politekhnicheskaya ul, St. Petersburg, 194021.
V. V. Shalagaev
Russian Federation
Vladimir V. Shalagaev,
9, Pushkarskii per., St. Petersburg, 197101;
61, Bolshoi pr., Vasilevskii ostrov, St. Petersburg, 199178.
Yu. A. Yakovlev
Russian Federation
Yuriy A. Yakovlev,
61, Bolshoi pr., Vasilevskii ostrov, St. Petersburg, 199178.
References
1. Kolachev B. A. Hydrogen embrittlement of metals. — Moscow: Metallurgiya, 1985. — 216 p. [in Russian].
2. Djukic M. B., Zeravcic V. S., Bakic G. M., et al. Hydrogen damage of steels: a case study and hydrogen embrittlement model / Engineering Failure Analysis. 2015. N 58. P. 485 – 498. DOI: 10.1016/j.engfailanal.2015.05.017
3. Bahr D. F., Overman N. R., San Marchi C. W., et al. Orientation specific mechanical assessment of hydrogen precharged stainless steels using nanoindentation. Effects of hydrogen on materials / Proceedings of the 2008 international hydrogen conference, September 7 – 10 2008, Jackson Lake Lodge, Grand Teton National Park, Wyoming, USA. — Ohio: ASM International. 2009. P. 85 – 179.
4. Zhao J., Ding H., Zhao W., et al. Influence of hydrogenation on microstructures and microhardness of Ti6Al4V alloy / Transactions of Nonferrous Metals Society of China. 2008. Vol. 18. N 3. P. 506 – 511. DOI: 10.1016/S1003-6326(08)60089-8
5. Godoia W., Kuromotoa N. K., Guimarãesb A. S., et al. Effect of the hydrogen outgassing time on the hardness of austenitic stainless steels welds / Material Science and Engineering: A. 2023. Vol. 354. N 1 – 2. P. 251 – 256.
6. Kim Y. S., Kim D. W., Kim S. S., et al. Effects of hydrogen diffusion on the mechanical properties of austenite 316L steel at ambient temperature / Materials Transactions. 2011. Vol. 52. N 3. P. 507 – 513. DOI: 10.2320/matertrans.M2010273
7. Matvienko Yu. G. Models and criteria of fracture mechanics. — Moscow: Fizmatlit, 2006. — 328 p. [in Russian].
8. Merson D. L., Polyanskii A. M., Polyanskii V. A., et al. Correlation of the mechanic parameters of steel 35G2 with hydrogen content and parameters of acoustic emission / Industr. Lab. Mater. Diagn. 2008. Vol. 74. N 2. P. 57 – 60 [in Russian].
9. Polyanskiy V. A., Belyaev A. K., Polyanskiy A. M., et al. Hydrogen embrittlement as a surface phenomenon in deformed metals / Physical Mesomechanics. 2022. Vol. 25. N 3. P. 27 – 37 [in Russian].
10. Miroshnichenko B. I. The role of a stressed state in the formation of stress-corrosion flaws in pipelines / Russian Journal of Nondestructive Testing. 2008. Vol. 44. N 6. P. 42 – 51 [in Russian].
11. Gumerov K. M., Silyvestrov S. A., Bagmanov R. R. Physical model of pipeline stress corrosion / Probl. Sbora Podgotovki Transp. Nefti Nefteprod. 2015. N 4. P. 82 – 95 [in Russian].
12. Albakasov A. I., Klimov M. I. On the issue of standardization of slot-like discontinuities in structures with hydrogen-containing media / Vestn. Orenburg. Gos. Univ. 2006. N 9. P. 328 – 334 [in Russian].
13. Pronin A. N., Okrepilov M. V., Ginyak E. B., et al. Modern metrology of physical and chemical measurements. — Moscow: OOO «Izdatel’stvo TRIUMF», 2022. — 561 p. [in Russian]. DOI: 10.32986/978-5-94472-103-7-25-07-2022
14. Yoon S. H., Kim C. G., Cho W. M. Measurement of tensile properties using filament wound ring specimens / Journal of reinforced plastics and composites. 1997. Vol. 16. N 9. P. 810 – 824. DOI: 10.1177/073168449701600903
15. Nindiyasari F., Pierick P. T., Boomstra D., et al. Ring tensile test of reference zircaloy cladding tube as a proof of principle for hotcell setup / TopFuel-2018 Conf., Prague, Czech Republic. 2018. — 9 p.
16. Khalfallah A., Ktari Z., Leitao C., et al. New mandrel design for ring hoop tensile testing / Experimental Techniques. 2021. Vol. 45. N 3. P. 1 – 19. DOI: 10.1007/s40799-021-00462-4
17. Samal M. K., Balakrishnan K. S., Parashar J., et al. Investigation of deformation behavior of ring-tensile specimens machined from pressure tubes of Indian PHWR / Transactions of the Indian Institute of Metals. 2014. Vol. 67. N 2. P. 167 – 176. DOI: 10.1007/s12666-013-0314-2
18. Kim S. K., Bang J. G., Kim D. H., et al. Mechanical property evaluation of high burn-up nuclear fuel cladding using the ring tensile test / Metals and Materials International. 2009. Vol. 15. N 4. P. 547 – 553. DOI: 10.1007/s12540-009-0547-0
19. Nagase F., Sugiyama T., Fuketa T. Optimized ring tensile test method and hydrogen effect on mechanical properties of zircaloy cladding in hoop direction / Journal of nuclear science and technology. 2009. Vol. 46. N 6. P. 545 – 552. DOI: 10.3327/jnst.46.545
20. Travica M., Mitrovic N. Petrovic A., et al. Experimental evaluation of hoop stress-strain state of 3D-printed pipe ring tensile specimens / Metals. 2022. Vol. 12. N 10. P. 1 – 11. DOI: 10.3390/met12101560
21. Saikaly W. E., Bailey W. D., Collins L. E. Comparison of ring expansion vs flat tensile testing for determining linepipe yield strength / International Pipeline Conference. American Society of Mechanical Engineers. 1996. Vol. 1. P. 209 – 213.
22. Mosin A. M., Evseev M. V., Portnykh I. A., et al. Changes in the physical and mechanical properties of fuel rod claddings made of EK164 and ChS68 steels after operation in the BN-600 reactor for four micro-companies / Izv. Vuzov. Yader. Énerget. 2011. N 1. P. 224 – 230 [in Russian].
23. Travica M., Mitrovic N., Petrovic A., et al. Experimental strain measurements on ring tensile specimens made of S235JRH steel pipe / Procedia Structural Integrity. 2023. Vol. 48. N 7. P. 280 – 287. DOI: 10.1016/j.prostr.2023.07.131
24. Laterreur V., Ruel J., Auger F. A., et al. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes / Journal of the mechanical behavior of biomedical materials. 2014. Vol. 34. P. 253 – 263. DOI: 10.1016/j.jmbbm.2014.02.017
25. Frolov A. S., Fedotov I. V., Gurovich B. A. Evaluation of the true-strength characteristics for isotropic materials using ring tensile test / Nuclear Engineering and Technology. 2021. Vol. 53. N 7. P. 2323 – 2333. DOI: 10.1016/j.net.2021.01.033
26. Gurovich B. A., Frolov A. S., Fedotov I. V. Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of 500 – 1100°C / Nuclear Engineering and Technology. 2020. Vol. 52. N 6. P. 1213 – 1221. DOI: 10.1016/j.net.2019.11.019
27. Kostyukhina A. V. Mechanical properties and deformation behavior of fuel cladding materials of power reactors based on the results of tensile tests of ring samples. Candidate’s thesis. — Moscow, 2020. — 145 p. [in Russian].
28. Kwon D. I., Asaro R. J. Hydrogen-assisted ductile fracture in spheroidized 1518 steel / Acta Metallurgica Et Materialia. 1990. Vol. 38(8). P. 1595 – 1606. DOI: 10.1016/0956-7151(90)90127-3
29. Depraetere R., Waele W. D, Cauwels M., et al. Single edge notched tension testing for assessing hydrogen embrittlement: a numerical study of test parameter influences / The 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022, 5 – 9 June 2022, Oslo, Norway. P. 1 – 12. DOI: 10.23967/eccomas.2022.255
30. Asadipoor M., Kadkhodapour J., Pourkamali A., et al. Experimental and numerical investigation of hydrogen embrittlement effect on microdamage evolution of advanced high-strenght dual-phase steel / Metals and Materials International, 2021. Vol. 27. P. 2276 – 2291. DOI: 10.1007/s12540-020-00681-1
31. Wasim M., Djukic M. B., Ngo T. D. Influence of hydrogen-enhanced plasticity and decohesion machanisma of hydrogen embrittlement on the fracture resistance of steel / Engineering Failure Analysis. 2021. Vol. 123. P. 105 – 312. DOI: 10.1016/j.engfailanal.2021.105312
32. Merson E. D. Study of the mechanism of destruction and the nature of acoustic emission during hydrogen embrittlement of low-carbon steel. Candidate’s thesis. — Tolyatti, 2016. — 161 p. [in Russian].
33. Sinyuk V. S., Pokhodnya I. K., Paltsevich A. P., et al. Experimental study of the mechanism of hydrogen embrittlement of metals with a bcc lattice / Automatic Welding. 2012. N 5. P. 12 – 16 [in Russian].
34. Duportal M., Oudriss A., Savall C., et al. On the implication of mobile hydrogen content on the surface reactivity of an austenitic stainless steel / Electrochimica Acta. 2022. Vol. 403. N 26. P. 139684: 1 – 13. DOI: 10.1016/j.electacta.2021.139684
35. Cauwels M., Claeys L., Depover T., et al. The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing / Frattura ed Integrità Strutturale. 2020. Vol. 14. N 51. P. 449 – 458. DOI: 10.3221/IGF-ESIS.51.33
36. Polyanskiy V. A., Alekseeva E., Belyaev A. K., et al. Phenomenon of skin effect in metals due to hydrogen absorption / Continuum mechanics and thermodynamics. 2019. Vol. 31. N 1 – 2. P. 1961 – 1975. DOI: 10.1007/s00161-019-00839-2
37. Ktari Z., Leitao C., Prates P. A., et al. Mechanical design of ring tensile specimen via surrogate modelling for inverse material parameter identification / Mechanics of Materials. 2021. Vol. 153. P. 103673: 1 – 16. DOI: 10.1016/j.mechmat.2020.103673
38. Polyanskiy V. A., Belyaev A. K., Sedova Yu. S., et al. Mesoeffect of the dual mechanism of hydrogen-induced cracking / Physical Mesomechanics. 2022. Vol. 25. N 3. P. 98 – 112 [in Russian].
Review
For citations:
Nechaeva A.V., Polyanskiy V.A., Polyanskiy A.M., Shalagaev V.V., Yakovlev Yu.A. Root cause analysis of the brittle fracture of pipes of boiler heating surfaces after long-term operation. Industrial laboratory. Diagnostics of materials. 2024;90(4):53-65. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-4-53-65