Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

GC-MS determination of polychlorinated biphenyls in water using extractive freezing-out of analytes

https://doi.org/10.26896/1028-6861-2024-90-5-20-26

Abstract

A method for determining polychlorinated biphenyls (PCBs) in water using the method of concentrating analytes through extractive freezing-out under the effect of a centrifugal forces (EFC) has been developed. A mathematical model for analyte extraction using a three-factor Box-Behnken design demonstrated that the content of acetonitrile in the extraction mixture is a significant factor, whereas the degree of PCBs chlorination and the concentration of analytes are insignificant parameters. Analysis of the surface area of the model allowed the determination of the optimal range of the acetonitrile concentration, which fell between 14 and 21%. A 15% content of acetonitrile in the extraction mixture provided maximum extraction efficiency for 7 different PCBs (>92%) across a wide range of analyte concentrations (1.0 – 5000 ng/liter). The relative standard deviations in the repeatability and reproducibility range from 4.2 to 6.8% and 5.3 to 8.1%, respectively, the accuracy of analyte determination being 10 – 15%. Petroleum hydrocarbons were not extracted into the acetonitrile extract and did not interfere with the determination of PCBs, which provided longer operation of the detector without any loss in the sensitivity. Co-extraction of polycyclic aromatic hydrocarbons and chlorinated pesticides did not affect the extraction of PCBs from water (95 – 100%) and did not touch on the metrological indicators of the determination procedure.

About the Authors

T. A. Chervonnaya
Kuban State University
Russian Federation

Tatiana A. Chervonnaya

149, Stavropolskaya ul., Krasnodar, 350040



T. N. Musorina
Kuban State University
Russian Federation

Tatiana N. Musorina

149, Stavropolskaya ul., Krasnodar, 350040



Z. A. Temerdashev
Kuban State University
Russian Federation

Zaual A. Temerdashev

149, Stavropolskaya ul., Krasnodar, 350040



V. N. Bekhterev
Forensic Medical Examination Bureau No. 2 of the Ministry of Health of Krasnodar Region
Russian Federation

Victor N. Bekhterev

1, Tuapsinskaya ul., Sochi, 354057



I. G. Korpakova
Kuban State University
Russian Federation

Irina G. Korpakova

149, Stavropolskaya ul., Krasnodar, 350040



References

1. Jiang S., Wan M., Lin K., et al. Spatiotemporal distribution, source analysis and ecological risk assessment of polychlorinated biphenyls (PCBs) in the Bohai Bay / Mar. Pollut. Bull. 2024. Vol. 198. 115780. DOI: 10.1016/j.marpolbul.2023.115780

2. Unyimadu J. P., Benson N. U. Polychlorinated biphenyls (PCBs) in intertidal sediment and water from Lagos lagoon: Baseline report on occurrence, distribution and ecotoxicological risk assessment / J. Hazard. Mater. Adv. 2023. Vol. 12. N 2. 100372. P. 1 – 11. DOI: 10.1016/j.hazadv.2023.100372

3. Mourier B., Desmet M., Van Metre P. C., et al. Historical records, sources, and spatial trends of PCBs along the Rhône River (France) / Sci. Total Environ. 2014. Vol. 476 – 477. P. 568 – 576. DOI: 10.1016/j.scitotenv.2014.01.026

4. Liu Y., Wang S., McDonough C. A., et al. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air – Water Exchange / Environ. Sci. Technol. 2016. Vol. 50. N 10. P. 4932 – 4939. DOI: 10.1021/acs.est.5b04586

5. Hannah T. J., Megson D., Sandau C. D. A review of the mechanisms of by-product PCB formation in pigments, dyes and paints / Sci. Total Environ. 2022. Vol. 852. 158529. DOI: 10.1016/j.scitotenv.2022.158529

6. Mackay D., Shiu W. Y., Lee S. C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. — Boca Raton, FL, USA: Taylor & Francis Group, 2006. — 4216 p. DOI: 10.1201/9781420044393

7. Zaghden H., Barhoumi B., Jlaiel L., et al. Occurrence, origin and potential ecological risk of dissolved polycyclic aromatic hydrocarbons and organochlorines in surface waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea) / Mar. Pollut. Bull. 2022. Vol. 180. 113737. DOI: 10.1016/j.marpolbul.2022.113737

8. Güzel B., Çetintürk K., Canlı O., Karademir A. Spatial distribution, source identification, and risk assessment of polychlorinated organic pollutants (PCDD/Fs and DL-PCBs) in the sediments of the largest urban water supply area (Iznik lake) in the Marmara region, Bursa, Türkiye / Catena. 2024. Vol. 234. 107566. DOI: 10.1016/j.catena.2023.107566

9. Liu C., Li K., Yu L., et al. POPs and their ecological risk in sewage sludge of waste water treatment plants in Beijing, China / Stochastic Environ. Res. Risk Assess. 2013. Vol. 27. N 7. P. 1575 – 1584. DOI: 10.1007/s00477-013-0693-2

10. Reddy A. V. B., Moniruzzaman M., Aminabhavi T. M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis / Chem. Eng. J. 2019. Vol. 358. P. 1186 – 1207. DOI: 10.1016/j.cej.2018.09.205

11. Xu W., Wang X., Cai Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review / Anal. Chim. Acta. 2013. Vol. 790. P. 1 – 13. DOI: 10.1016/j.aca.2013.04.026

12. Su L., Zhang N., Tang J., et al. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water / Anal. Chim. Acta. 2021. Vol. 1186. 339120. DOI: 10.1016/j.aca.2021.339120

13. Zhu S., Mu M., Gao Y., et al. Three-dimensional rose-like zinc oxide fiber coating for simultaneous extraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons by headspace solid phase microextraction / J. Chromatogr. A. 2023. Vol. 1711. 464450. DOI: 10.1016/j.chroma.2023.464450

14. Temerdashev Z., Musorina T., Chervonnaya T., Arutyunyan Z. V. Possibilities and Limitations of Solid-Phase and Liquid Extraction for the Determination of Polycyclic Aromatic Hydrocarbons in Environmental Samples / J. Anal. Chem. 2021. Vol. 76. P. 1357 – 1370. DOI: 10.1134/S1061934821120133

15. RF Pat. No. 2303476 / Bekhterev V. N. A method for extracting organic substances from aqueous media using a combination of extraction and freezing. Publ. 27.04.2005 [in Russian].

16. Bekhterev V. N. Rapid gas-chromatographic determination of phenol and cresols in water by extractive freezing-out / J. Anal. Chem. 2023. Vol. 78. N 6. P. 776 – 782. DOI: 10.1134/s1061934823040056

17. Temerdashev Z. A., Chervonnaya T. A., Musorina T. N., Bekhterev V. N. Sample preparation of soils and bottom sediments for gas chromatography-mass spectrometry determination of PAHs / Anal. Kontrol’. 2020. Vol. 24. P. 287 – 297 [in Russian]. DOI: 10.31857/S0044450223040059

18. Afful S., Awudza J. A. M., Twumasi S. K., Osae S. Determination of indicator polychlorinated biphenyls (PCBs) by gas chromatography-electron capture detector / Chemosphere. 2013. Vol. 93. N 8. P. 1556 – 1560. DOI: 10.1016/j.chemosphere.2013.08.001

19. Nikonova A. A., Gorshkov A. G. Rapid Chromatography for the Determination of Polychlorinated Biphenyls by GC-MS in Environmental Monitoring / Anal. Lett. 2011. Vol. 44. N 7. P. 1290 – 1300. DOI: 10.1080/00032719.2010.546024

20. Hill T., Lewicki P. Statistics. Methods and Applications: a Comprehensive Reference for Science, Industry, and Data Mining. — Tulsa, OK, USA: StatSoft, 2007. — 832 p.

21. Yuan L., Qi S., Wu X., et al. Spatial and temporal variations of organochlorine pesticides (OCPs) in water and sediments from Honghu Lake, China / J. Geochem. Explor. 2013. Vol. 132. P. 181 – 187. DOI: 10.1016/j.gexplo.2013.07.002

22. Liu X., Dong Z., Baccolo G., et al. Distribution, composition and risk assessment of PAHs and PCBs in cryospheric watersheds of the eastern Tibetan Plateau / Sci. Total Environ. 2023. Vol. 890. 164234. DOI: 10.1016/j.scitotenv.2023.164234

23. Zhi H., Zhao Z., Zhang L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China / Chemosphere. 2015. Vol. 119. P. 1134 – 1140. DOI: 10.1016/j.chemosphere.2014.09.054

24. Klenkin A. A., Korpakova I. G., Pavlenko L. F., Temerdashev Z. A. Ecosystem of the Azov Sea: anthropogenic pollution. — Krasnodar: FGUP «AzNIIRKh», 2007. — 324 p. [in Russian].

25. Temerdashev Z. A., Ovsepyan S. K., Musorina T. N., et al. QuEChERS Extraction of PAHs from Various Soils and Sediments Followed by Chromatographic Determination / J. Anal. Chem. 2023. Vol. 78. P. 1159 – 1173. DOI: 10.1134/S1061934823090174

26. Pavlenko L. F., Korotkova L. I., Korablina I. V., et al. Practical guide to chemical analysis of elements in aquatic ecosystems. Priority toxicants in water, sediment, and biota. — Rostov-on-Don: Mini Taip, 2018. — 436 p. [in Russian].


Review

For citations:


Chervonnaya T.A., Musorina T.N., Temerdashev Z.A., Bekhterev V.N., Korpakova I.G. GC-MS determination of polychlorinated biphenyls in water using extractive freezing-out of analytes. Industrial laboratory. Diagnostics of materials. 2024;90(5):20-26. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-5-20-26

Views: 449


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)