

Methodological issues of the fuzzy set theory (generalizing article)
https://doi.org/10.26896/1028-6861-2024-90-5-69-78
Abstract
The theory of fuzziness is an important area of modern theoretical and applied mathematics. The methodology of the theory of fuzziness is a doctrine of organizing activities in the field of development and application of the scientific results of this theory. We discuss some methodological issues of the theory of fuzziness, i.e., individual components of the methodology in the area under consideration. The theory of fuzziness is a science of pragmatic (fuzzy) numbers and sets. The ancient Greek philosopher Eubulides showed that the concepts «Heap» and «Bald» cannot be described using natural numbers. E. Borel proposed to define a fuzzy set using a membership function. A fundamentally important step was taken by L. A. Zadeh in 1965. He gave the basic definitions of the algebra of fuzzy sets and introduced the operations of intersection, product, union, sum, negation of fuzzy sets. The main thing he did was demonstration of the possibilities of expanding («doubling») mathematics: by replacing the numbers and sets used in mathematics with their fuzzy counterparts, we obtain new mathematical formulations. In the statistics of non-numerical data, methods of statistical analysis of fuzzy sets have been developed. Interval and triangular fuzzy numbers are often used specific types of membership functions. The theory of fuzzy sets in a certain sense is reduced to the theory of random sets. We think fuzzy and that is the only reason we understand each other. The paradox of the fuzzy theory is that it is impossible to consistently implement the thesis «Everything in the world is fuzzy». For ordinary fuzzy sets, the argument and values of the membership function are crisp. If they are replaced by fuzzy analogues, then their description will require their own clear arguments and membership functions, and so on ad infinitum. System fuzzy interval mathematics proceeds from the need to take into account the fuzziness of the initial data and the prerequisites of the mathematical model. One of the options for its practical implementation is an automated system-cognitive analysis and the intellectual system «Eidos».
About the Author
A. I. OrlovRussian Federation
Alexander I. Orlov
5, 2-ya Baumanskaya ul., Moscow, 105005
References
1. Tarantsev A. A On the possibility of building regression models with fuzzy initial information / Industr. Lab. Mater. Diagn. 1999. Vol. 65. N 1. P. 67 – 70 [in Russian].
2. Khurgin Ya. I. Precise and fuzzy algebraic means and their uses / Industr. Lab. Mater. Diagn. 2000. Vol. 66. N 1. P. 64 – 66 [in Russian].
3. Germashev I. V., Derbisher V. E., Morozenko T. F., Orlova P. A. Assessment of the quality of technical objects using fuzzy sets / Industr. Lab. Mater. Diagn. 2001. Vol. 67. N 1. P. 65 – 68 [in Russian].
4. Klement’eva P. V. Application of the theory of fuzzy sets to measure and evaluate the effectiveness of the implementation of a science-intensive product innovation / Industr. Lab. Mater. Diagn. 2006. Vol. 72. N 11. P. 65 – 69 [in Russian].
5. Orlov A. I. System fuzzy interval mathematics: the basis of tools of mathematical research methods / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 7. P. 5 – 7 [in Russian]. DOI: 10.26896/1028-6861-2022-88-7-5-7
6. Orlov A. I. Generalized additive-multiplicative risk estimation model based on fuzzy and interval initial data / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 1. P. 74 – 84 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-74-84
7. Novikov A. M., Novikov D. A. Methodology. — Moscow: SINTEG, 2007. — 668 p. [in Russian].
8. Rademakher G., Teplits O. Numbers and figures. Experiences of mathematical thinking. — Moscow: MTsNMO, 2020. — 276 p. [in Russian].
9. Zadeh L. A. Fuzzy sets / Information and Control. 1965. Vol. 8. N 3. P. 338 – 353.
10. Zadeh L. The concept of a linguistic variable and its application to making approximate decisions. — Moscow: Mir, 1976. — 166 p. [Russian translation].
11. Ptuskin A. P. Fuzzy models and methods in management. — Moscow: MGTU im. N. É. Baumana, 2008. — 215 p. [in Russian].
12. Orlov A. I. Optimization Problems and Fuzzy Variables. — Moscow: Znanie, 1980. — 64 p. [in Russian].
13. Diogen Laertskii. About the life, teachings and sayings of famous philosophers. — Moscow: Mysl’, 1986. — 571 p. [in Russian].
14. Ivin A. A. Logics. Tutorial. 2nd Edition. — Moscow: Znanie, 2012. — 334 p. [in Russian].
15. Bergmann M. An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems. — Cambridge: Cambridge Univ. Press, 2008. — 313 p.
16. Borel’ E. Probability and certainty. — Moscow: GIFML, 1961. — 120 p. [in Russian].
17. Voschinin A. P. A Method for Analyzing Data with Interval Errors in Problems of Hypothesis Testing and Parameter Estimation of Implicit Linearly Parameterized Functions / Industr. Lab. Mater. Diagn. 2000. Vol. 66. N 3. P. 51 – 64 [in Russian].
18. Voschinin A. P. Interval data analysis: development and prospects / Industr. Lab. Mater. Diagn. 2002. Vol. 68. N 1. P. 118 – 126 [in Russian].
19. Voschinin A. P., Skibitskiy N. V. Interval approach to expression of measurement uncertainty and calibration of digital measuring systems / Industr. Lab. Mater. Diagn. 2007. Vol. 73. N 11. P. 66 – 71 [in Russian].
20. Skibitskiy N. V. Construction of direct and inverse static characteristics of objects based on interval data / Industr. Lab. Mater. Diagn. 2017. Vol. 83. N 1. Part 1. P. 87 – 93 [in Russian].
21. Levin V. I. Interval equations in problems of data processing / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 3. P. 73 – 78 [in Russian]. DOI: 1026896/1028-6861-2018-84-3-73-78
22. Skibitskiy N. V. Solving the problem of analytical description of static characteristics in conditions of interval uncertainty / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 3. P. 64 – 74 [in Russian]. DOI: 10.26896/1028-6861-2019-85-3-64-74
23. Shary S. P. Data fitting problem under interval uncertainty in data / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 1. P. 62 – 74 [in Russian]. DOI: 10.26896/1028-6861-2020-86-1-62-74
24. Skibitskiy N. V. Construction of passport static characteristics of the system using the interval approach / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 1. P. 68 – 76 [in Russian]. DOI: 10.26896/1028-6861-2021-87-1-68-76
25. Skibitskiy N. V. Interval methods in the problems of optimal control / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 5. P. 71 – 82 [in Russian]. DOI: 10.26896/1028-6861-2022-88-5-71-82
26. Lebeg A. On the measurement of quantities. 2nd Edition. — Moscow: Uchpedgiz, 1960. — 204 p. [in Russian].
27. Efimov N. V. Higher geometry. — Moscow: URSS, 2022. — 600 p. [in Russian].
28. Goodman I. R. Fuzzy sets as equivalence classes of random sets / Fuzzy Set and Possibility Theory: Recent Developments. — New York – Oxford – Toronto – Sydney – Paris – Frankfurt: Pergamon Press, 1982. P. 327 – 343.
29. Orlov A. I. Fuzzy math / Nauka i zhizn’. 1982. N 7. P. 60 – 67 [in Russian].
30. Zadeh L. A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-1 / Information Sciences. 1975. Vol. 8. P. 199 – 249.
31. Mendel J., Hagras H., Tan W.-W., Melek W. W., Ying H. Introduction To Type-2 Fuzzy Logic Control: Theory and Applications. — New Jersey: Wiley-IEEE Press, 2014. — 376 p.
32. Grigor’eva D. R., Gareeva G. A., Basyrov R. R. Fundamentals of Fuzzy Logic. — Naberezhnye Chelny: Izd. NChI KFU, 2018. — 42 p. [in Russian].
33. Gvozdik M. I., Abdulaliev F. A., Shilov A. G. Risk Assessment Models in a Fuzzy Environment Using Inference on First-Order Fuzzy Sets / Vestn. Sankt-Peterburg. Univ. Gos. Protivopozh. Sluzhby MChS Rossii. 2017. N 2. P. 107 – 120 [in Russian].
34. Gvozdik M. I., Abdulaliev F. A., Shilov A. G. Risk assessment models in a fuzzy environment on fuzzy sets of the second order / Vestn. Sankt-Peterburg. Univ. Gos. Protivopozh. Sluzhby MChS Rossii. 2017. N 3. P. 93 – 106 [in Russian].
35. Orlov A. I., Lutsenko E. V. Analysis of data, information and knowledge in system fuzzy interval mathematics: scientific monograph. — Krasnodar: KubGAU, 2022. — 405 p. [in Russian].
36. Eliseeva I. I., Kurysheva P. V., Neradovskaya Yu. V., et al. Econometrics: textbook for universities. — Moscow: YuRAIT, 2020. — 449 p. [in Russian].
Review
For citations:
Orlov A.I. Methodological issues of the fuzzy set theory (generalizing article). Industrial laboratory. Diagnostics of materials. 2024;90(5):69-78. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-5-69-78