

Validation of the method for determining priority phthalates by GC-MS at trace concentrations in surface water with a background pollution level
https://doi.org/10.26896/1028-6861-2024-90-7-17-26
Abstract
A methodology for determining priority phthalates (PP) at trace concentrations in surface waters with a background pollution level has been validated. Lake Baikal, the largest natural reservoir that retains up to 20% of the world’s fresh surface waters, was chosen as a natural model for the study. Baikal is characterized by a minimal content of suspended organic matter, a low degree of mineralization and a background level of organic pollutants. Four priority phthalates were found in Baikal water: dimethyl phthalate, diethyl phthalate di-n-butyl phthalate and di-(2-ethylhexyl) phthalate present in the concentration range from 0.01 to 0.66 μg/liter. The method for phthalate determination includes a single liquid-liquid extraction of phthalates (Vsample = 1 liter) and direct analysis of the extracts by GC-MS. Considering the minimum content of suspended particles in water and the use of high sensitivity of the mass spectrometry, the stages of sample filtration and concentration of extracts are excluded from the procedure. Deuterated phthalates are used as surrogate internal standards for the quantitative determination of priority phthalates. The laboratory background of phthalates was assessed using reagent-blank methods, exhaustive multiple extraction and subsequent exclusion of the resulting value from the determination result as a systematic error. The limits of phthalate determination (0.01 – 0.17 μg/liter) and the error of determination (±δ from 12 to 38%) were assessed in the concentration range from 0.01 to 0.66 μg/liter. The method was validated during monitoring of persistent organic pollutants in water of Lake Baikal for the period 2015 – 2023.
About the Authors
T. A. GrigoryevaRussian Federation
Tatyana A. Grigoryeva
3, Ulan-Batorskaya ul., Irkutsk, 664033, Russia
A. G. Gorshkov
Russian Federation
Alexander G. Gorshkov
3, Ulan-Batorskaya ul., Irkutsk, 664033, Russia
References
1. Annual production of plastics worldwide. https://www.statista. com/ statistics/282732/ global-production-of-plastics-since-1950 (accessed October 21, 2023).
2. Karim A. V., Krishnan S., Sethulekshmi S., Shriwastav A. Phthalate Esters in the Environment: An Overview on the Occurrence, Toxicity, Detection, and Treatment Options / S. P. Singh, A. K. Agarwal, T. Gupta, S. M. Maliyekkal (eds.). New Trends in Emerging Environmental Contaminants. Energy, Environment, and Sustainability. — Singapore: Springer, 2022. P. 131 – 160. DOI: 10.1007/978-981-16-8367-1_7
3. Benjamin S., Pradeep S., Josh M. S., Kumar S. A monograph on the remediation of hazardous phthalates / J. Hazard. Mater. 2015. Vol. 298. P. 58 – 72. DOI: 10.1016/j.jhazmat.2015.05.004
4. Net S., Sempéré R., Delmont A., et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices / Environ. Sci. Technol. 2015. Vol. 49. N 7. P. 4019 – 4035. DOI: 10.1021/es505233b
5. Li P.-H., Jia H.-Y., Wang Y., et al. Characterization of PM 2.5-bound phthalic acid esters (PAEs) at regional background site in northern China: Long-range transport and risk assessment / Sci. Total Environ. 2019. Vol. 659. P. 140 – 149. DOI: 10.1016/j.scitotenv.2018.12.246
6. Xie Z., Ebinghaus R., Temme C., et al. Occurrence and Air-Sea Exchange of Phthalates in the Arctic Environ / Sci. Technol. 2007. Vol. 41. P. 4555 – 4560. DOI: 10.1021/es0630240
7. Gao D.-W., Wen Z.-D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes / Sci. Total Environ. 2016. Vol. 541. P. 986 – 1001. DOI: 10.1016/j.scitotenv.2015.09.148
8. Zheng X., Zhang B.-T., Teng Y. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities / Sci. Total Environ. 2014. Vol. 476. P. 107 – 113. DOI: 10.1016/j.scitotenv.2013.12.111
9. Chen C.-F., Chen C.-W., Ju Y.-R., Dong C.-D. Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan / Marine Pollut. Bull. 2017. Vol. 124. P. 767 – 774. DOI: 10.1016/j.marpolbul.2016.11.064
10. Zhang Z.-M., Zhang H.-H., Zou Y.-W., Yang G.-P. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater, and sediment of the Bohai Sea and the Yellow Sea / Environ. Pollut. 2018. Vol. 240. P. 235 – 247. DOI: 10.1016/j.envpol.2018.04.056
11. Lee Y.-M., Lee J.-E., Choe W., et al. Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea / Environ. Intern. 2019. Vol. 126. P. 635 – 643. DOI: 10.1016/j.envint.2019.02.059
12. Mondal T., Mondal S., Ghosh S.-K., et al. Phthalates — A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches / Environ. Res. 2022. Vol. 214. 114059. DOI: 10.1016/j.envres.2022.114059
13. Huang L., Zhu X., Zhou S., et al. Phthalic Acid Esters: Natural Sources and Biological Activities / Toxins. 2021. Vol. 13. 495. DOI: 10.3390/toxins13070495
14. IARC. Agents Classified by the IARC Monographs. — Geneva, Switzerland: IARC Monographs, 2011. Vol. 1 – 102.
15. Net S., Delmont A., Sempere R., et al. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment, and soil): A review / Sci. Total Environ. 2015. Vol. 515. P. 162 – 180. DOI: 10.1016/j.scitotenv.2015.02.013
16. Baram G. I., Azarova I. N., Gorshkov A. G., et al. Determination of Bis(2-ethylhexyl) Phthalate in Water by High-Performance Liquid Chromatography with Direct On-Column Preconcentration / J. Anal. Chem. 2000. Vol. 55. N 8. P. 750 – 754. DOI: 10.1007/BF02757910
17. Vasilyeva I. A., Mikheeva A. Yu. Determination of phthalates in aqueous samples by gas chromatography/mass spectrometry / Mass-Spektrometriya. 2008. Vol. 5. N 2. P. 133 – 138 [in Russian].
18. Kholova A. R., Vozhdaeva M. Y., Kantor L. I., et al. Gas chromatography with mass selective detection for of phthalic acid esters determination in drinking and natural water / Voda: Khim. Ékol. 2012. N 5. P. 85 – 91 [in Russian].
19. Avdeeva N. M., Amelin V. G. Determination of phthalates in milk, dairy products, water, juices and beverages using ultrahigh liquid performance chromatography/quadrupole time-of-flight mass spectrometry of high resolution / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 9. P. 21 – 27 [in Russian]. DOI: 10.26896/1028-6861-2018-84-9-21-27
20. Krylov V. A., Volkova V. V. Sources of systematic errors in the gas-chromatographic determination of dialkyl-o-phthalates in water / J. Anal. Chem. 2015. Vol. 70. N 5. P. 586 – 592. DOI: 10.1134/S106193481505007X
21. Zenkevich I. G., Rotary K. I., Selivanov S. I., et al. Determination of dialkyl phthalates in different objects (Problems for discussion) / Vestn. SPbGU. Ser. 4. 2015. Vol. 2(60). N 4. P. 386 – 394 [in Russian].
22. Prokupkova G., Holadova K., Poustka J., Hajšlova J. Development of a solid-phase microextraction method for the determination of phthalic acid esters in water / Anal. Chim. Acta. 2002. Vol. 457. N 2. P. 211 – 223. DOI: 10.1016/S0003-2670(02)00020-X
23. Penalver A., Pocurull E., Borrull F., Marce R. M. Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection / J. Chromatogr. A. 2000. Vol. 872. P. 191 – 201. DOI: 10.1016/s0021-9673(99)01284-4
24. Lee M.-R., Lai F.-Y., Dou Ji., et al. Determination of Trace Leaching Phthalate Esters in Water and Urine from Plastic Containers by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry / Anal. Lett. 2011. Vol. 44. N 4. P. 676 – 686. DOI: 10.1080/00032711003783077
25. Krylov V. A., Volkova V. V. Determination of o-phthalates in water with chromatography-mass spectrometric detection and concentration with ultrasonic dispersion of the extractant / Vestn. Nizhegorodskogo Univ. im. N. I. Lobachevskogo. 2014. N 1(1). P. 119 – 125 [in Russian].
26. Yang Q., Huang X., Wen Z., et al. Evaluating the spatial distribution and source of phthalate esters in the surface water of Xingkai Lake, China during summer / J. Great Lakes Res. 2021. Vol. 47. P. 437 – 446. DOI: 10.1016/j.jglr.2021.01.001
27. Luo X., Shu S., Feng H., et al. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China / Sci. Total Environ. 2021. Vol. 768. N 10. 144517. DOI: 10.1016/j.scitotenv.2020.144517
28. Le T. M., Nguyena H. M. N., Nguyen Vy. K., et al. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam / Sci. Total Environ. 2021. Vol. 788. N 20. 147831. DOI: 10.1016/j.scitotenv.2021.147831
29. Yoshioka T., Ueda S., Khodzher T., et al. Distribution of dissolved organic carbon in Lake Baikal and its watershed / Limnology. 2002. N 3. P. 159 – 168. DOI: 10.1007/s102010200019
30. Domysheva V. M., Sorokovikova L. M., Sinyukovich V. N., et al. Ionic Composition of Water in Lake Baikal, Its Tributaries, and the Angara River Source during the Modern Period / Russ. Meteorol. Hydrol. 2019. N 10. P. 77 – 86 [in Russian].
31. Gorshkov A. G., Kustova O. V., Izosimova O. N., Babenko T. A. POPs Monitoring System in Lake Baikal — Impact of Time or the First Need? / Limnol. Freshwater Biol. 2018. N 1. P. 43 – 49. DOI: 10.31951/2658-3518-2018-A-1-43
32. Kadis R. L. Metrological and statistical meaning of the concept «accuracy» in chemical analysis. ISO 5725, indexes of accuracy and measurement uncertainty / Industr. Lab. Mater. Diagn. 2006. Vol. 72. N 2. P. 53 – 60 [in Russian].
33. Gorshkov A. G., Izosimova O. N., Kustova O. V. Determination of Priority Polycyclic Aromatic Hydrocarbons in Water at The Trace Level / J. Anal. Chem. 2019. Vol. 74. N 8. P. 771 – 777. DOI: 10.1134/S1061934819080082
34. Kustova O. V., Stepanov A. S., Gorshkov A. G. Determination of Indicator Congeners of Polychlorinated Biphenyls in Water at Ultratrace Levels by Gas Chromatography — Tandem Mass Spectrometry / J. Anal. Chem. 2021. Vol. 76. N 11. P. 1336 – 1344. DOI: 10.1134/S106193482111006X
35. Gorshkov A., Grigoryeva T., Bukin Y., Kuzmin A. Case study of Diesters of o-Phthalic Acids in Surface Waters with Background Level of Pollution / Toxics. 2023. Vol. 11. 869. DOI: 10/3390/toxics11100869
Review
For citations:
Grigoryeva T.A., Gorshkov A.G. Validation of the method for determining priority phthalates by GC-MS at trace concentrations in surface water with a background pollution level. Industrial laboratory. Diagnostics of materials. 2024;90(7):17-26. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-7-17-26