Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fatigue fracture of 316L steel manufactured by selective laser melting method

https://doi.org/10.26896/1028-6861-2024-90-7-56-67

Abstract

The kinetics of short cracks in 316L steel samples made by selective laser melting was studied. The structural sensitivity of such cracks, which form on technological defects at the early stage of fatigue is noted. The cracks develop predominantly along the fusion boundaries and slow down their growth at the boundaries of the melt pools. An increase in the crack opening of arrested cracks lead to the formation of a plastic zone at their tips, localization of deformation, a decrease in opening and continued growth with an increase in the number of cycles. The alternation of the processes of propagation and deceleration of short cracks during loading is reflected in the kinetic diagram of fatigue failure which has rate growth thresholds with spacing between them being close to the scanning step during steel manufacturing. The diagram is described by the Paris equation with the same exponent at the growth stage of both short and long cracks. The plotted fatigue curve was compared with fatigue curves for the same material produced by traditional and additive methods. It was shown that the plotted fatigue curve, as well as the fatigue curves for similar materials taken from literary sources, lie much lower than the fatigue curve for the same steel obtained by the traditional method. However, the use of optimal manufacturing modes, as well as subsequent heat treatment, leads to the fatigue characteristics of «additive» steel being similar to those of steels produced by the traditional method. The macro- and microrelief of the fracture surfaces of the samples was studied, the stages of stable and accelerated crack growth were identified, the crack lengths at fracture surfaces corresponding to these stages were evaluated and the predominate fracture mechanisms at each stage were described. It is shown that the observed knee point in the fatigue curve is accompanied by an increase in the damage of the lateral surface of the samples with an increase in the stress amplitude and transition to a more ductile fracture relief, which is explained by the switch from the plane-strain state to a plane-stressed state of the sample material realizing at the tip of the macrocrack.

About the Authors

L. S. Botvina
A. A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences
Russian Federation

Ludmila R. Botvina 

49 Leninskiy prosp., Moscow, 119334, Russia



E. N. Belecky
A. A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences
Russian Federation

Evgeny N. Belecky 

49 Leninskiy prosp., Moscow, 119334, Russia



Yu. A. Demina
A. A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences
Russian Federation

Yulia A. Demina 

49 Leninskiy prosp., Moscow, 119334, Russia



I. A. Ivanov
NPO «TsNIITMASh»
Russian Federation

Ivan A. Ivanov 

4, Sharikopodshipnikovskaya ul., Moscow, 115088, Russia



References

1. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals / Acta Mater. 2016. Vol. 117. P. 371 – 392. DOI: 10.1016/j.actamat.2016.07.019

2. Olakanmi E. O., Cochrane R. F., Dalgarno K. W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties / Prog. Mater. Sci. 2015. Vol. 74. P. 401 – 477. DOI: 10.1016/j.pmatsci.2015.03.002

3. Thijsa L., Kempenb K., Kruthb J.-P., Van Humbeecka J. Fine srtructured aluminium products with controllable texture by selective laser melting of pro-alloyed AlSi10Mg powder / Acta Mater. 2013. Vol. 61. P. 1809 – 1819. DOI: 10.1016/j.actamat.2012.11.052

4. Ivanov A. D., Minaev V. L., Vishnyakov G. N. Non-destructive optical testing of the products obtained using additive manufacturing / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 10. P. 76 – 82 [in Russian]. DOI: 10.26896/1028-6861-2019-85-10-76-82

5. Fang Z. C., Wu Z. L., Huang C. G., Wu C. W. Review on residual stress in selective laser melting additive manufacturing of alloy parts / Opt. Laser Technol. 2020. Vol. 129. N 15. P. 106283. DOI: 10.1016/j.optlastec.2020.106283

6. Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities / Int. J. Fatigue. 2017. Vol. 98. P. 14 – 31. DOI: 10.1016/j.ijfatigue.2017.01.001

7. Konieczny B., Szczesio-Wlodarczyk A., Sokolowski J., Bociong K. Challenges of Co – Cr Alloy Additive Manufacturing Methods in Dentistry — The Current State of Knowledge (Systematic Review) / Materials (Basel). 2020. Vol. 13. N 16. P. 3524. DOI: 10.3390/ma13163524

8. Botvina L. R. Fracture: Kinetics, Mechanisms, General Laws. — Moscow: Nauka, 2008. — 334 p. [in Russian].

9. Tokaji K., Ogawa T. The growth behaviour of Microstructurally small fatigue cracks in metals / Short fatigue cracks. Vol. 13. — ESIS, 1992. P. 85 – 99.

10. Makhutov N. A. Complex study of the fracture processes in materials and structures / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 11. P. 46 – 51 [in Russian]. DOI: 10.26896/1028-6861-2018-84-11-46-51

11. Sanaei N., Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review / Prog. Mater. Sci. 2021. Vol. 117. P. 100724. DOI: 10.1016/j.pmatsci.2020.100724

12. Becker T. H., Kumar P., Ramamurty U. Fracture and fatigue in additively manufactured metals / Acta Mater. 2021. Vol. 219. P. 117240. DOI: 10.1016/j.actamat.2021.117240

13. Chowdhury P., Sehitoglu H. Mechanisms of fatigue crack growth — A critical digest of theoretical developments / Fatigue Fract. Eng. Mater. Struct. 2016. Vol. 39. N 6. P. 652 – 674. DOI: 10.1111/ffe.12392

14. Pearson S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks / Eng. Fract. Mech. 1975. Vol. 7. N 2. P. 235 – 247. DOI: 10.1016/0013-7944(75)90004-1

15. Lankford J. Initiation and early growth of fatigue cracks in high strength steel / Eng. Fract. Mech. 1977. Vol. 9. N 3. P. 617 – 624. DOI: 10.1016/0013-7944(77)90074-1

16. Cheng A. S., Laird C. Fatigue Life Behavior of Copper Single Crystals. Part II: Model for Crack Nucleation in Persistent Slip Bands / Fatigue Fract. Eng. Mater. Struct. 1981. Vol. 4. N 4. P. 331 – 341. DOI: 10.1111/j.1460-2695.1981.tb01131.x

17. Taylor D., Knott J. F. Fatigue Crack Propagation Behaviour of Short Cracks; the Effect of Microstructure / Fatigue Fract. Eng. Mater. Struct. 1981. Vol. 4. N 2. P. 147 – 155. DOI: 10.1111/j.1460-2695.1981.tb01116.x

18. Miller K. J. The Behaviour of Short Fatigue Cracks and Part I-a Review of Two Recent Books / Fatigue Fract. Eng. Mater. Struct. 1987. Vol. 10. N 1. P. 93 – 113.

19. Botvina L. R. Fracture Kinetics of Structural Materials. — Moscow: Nauka, 1989. — 234 p. [in Russian].

20. Botvina L. R., Shabalina V. N. On discontinuity of kinetic diagram of fatigue fracture / Problems of strength. 1986. Vol. 9. P. 62 – 67 [in Russian].

21. Botvina L. R., Kogan I. S. Features of small fatigue cracks growth in stainless steel notched samples / Fiz.-Khim. Mekh. Mater. 1984. Vol. 20. N 5. P. 108 – 109 [in Russian].

22. Botvina L. R., Kogan I. S., Limar’ L. V. Growth of small fatigue cracks in notched specimens / Fiz.-Khim. Mekh. Mater. 1984. Vol. 20. P. 77 – 81 [in Russian].

23. Botvina L. R., Kogan I. S., Limar’ L. V. Method for estimating the growth rate of small fatigue cracks in notched specimens / Zavod. Lab. 1984. Vol. 60. N 12. P. 59 – 61 [in Russian].

24. Irwin G. R. Fracture / Chapter in the book Encyclopedia of Physics. Vol. VI. Elasticity and Plasticity. 1958. P. 551 – 590. DOI: 10.1007/978-3-662-43081-1

25. Miller K. J. The behavior of short fatigue cracks and their initiation. Part II. A general summary / Fatigue Fract. Eng. Mater. Struct. 1987. Vol. 10. N 2. P. 93 – 113. DOI: 10.1111/j.1460-2695.1987.tb01153.x

26. Taylor D. Euromech colloquium on short fatigue cracks / Fatigue Eng. Mater. Struct. 1982. Vol. 5. N 4. P. 305 – 309. DOI: 10.1111/j.1460-2695.1982.tb01239.x

27. Isaenkova M. G., Yudin A. V., Rubanov A. E., et al. Deformation behavior modelling of lattice structures manufactured by a selective laser melting of 316L steel powder / J. Mater. Res. Technol. 2020. Vol. 9. N 6. P. 15177 – 15184. DOI: 10.1016/j.jmrt.2020.10.089

28. ASTM A 240/A 240M. Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications. 2017.

29. Huang J.-Y., Yeh J.-J., Jeng S.-L., et al. High-Cycle Fatigue Behavior of Type 316L Stainless Steel / Mater. Trans. 2006. Vol. 47. N 2. P. 409 – 417. DOI: 10.2320/matertrans.47.409

30. Spierings A. B., Starr T. L., Wegener K. Fatigue performance of additive manufactured metallic parts / Rapid Prototyp. J. 2013. Vol. 19. N 2. P. 88 – 94. DOI: 10.1108/13552541311302932

31. Hatami S., Ma T., Vuoristo T., et al. Fatigue Strength of 316 L Stainless Steel Manufactured by Selective Laser Melting / J. Mater. Eng. Perform. 2020. Vol. 29. N 5. P. 3183 – 3194. DOI: 10.1007/s11665-020-04859-x

32. Wood P., Libura T., Kowalewski Z. L., et al. Influences of horizontal and vertical build orientations and post-fabrication processes on the fatigue behavior of stainless steel 316l produced by selective laser melting / Materials (Basel). 2019. Vol. 12. N 24. DOI: 10.3390/ma1224203

33. Wang Z., Yang S., Huang Y., et al. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM) / Cailiao Daobao/Materials Reports. 2021. Vol. 14. N 22. P. 22125 – 22131. DOI: 10.11896/cldb.20070232

34. Riemer A., Leuders S., Thöne M., et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting / Eng. Fract. Mech. Pergamon. 2014. Vol. 120. P. 15 – 25. DOI: 10.1016/j.engfracmech.2014.03.008

35. Shabalin V. I. On the discontinuity in duralumin fatigue curves / Dokl. AN SSSR. Tekhn. Fiz. 1958. Vol. 122. N 4. P. 600 – 604 [in Russian].

36. Zhang M., Li H., Zhang X., Hardacre D. Review of the fatigue performance of stainless steel 316L parts manufactured by selective laser melting / Proc. Int. Conf. Prog. Addit. Manuf. 2016. Vol. F1290. P. 563 – 568.

37. Zhang J., Zeißig M., Dörfert R., et al. Influence of laser beam scanning pattern and polar angle on the fatigue behavior of additively manufactured specimens made of steel 316L / Mater. Sci. Eng. A. 2023. Vol. 886. P. 145651. DOI: 10.1016/j.msea.2023.145651

38. Qiu C., Adkins N. J. E., Attallah M. M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V / Mater. Sci. Eng. A. 2013. Vol. 578. P. 230 – 239. DOI: 10.1016/j.msea.2013.04.099

39. Saiz E., Tomsia A. P., Cannon R. M. Ridging effects on wetting and spreading of liquids on solids / Acta Mater. 1998. Vol. 46. N 7. P. 2349 – 2361. DOI: 10.1016/S1359-6454(98)80016-5

40. Sunder R., Porter W. J., Ashbaugh N. E. Fatigue voids and their significance / Fatigue Fract. Eng. Mater. Struct. 2002. Vol. 25. N 11. P. 1015 – 1024. DOI: 10.1046/j.1460-2695.2002.00565.x


Review

For citations:


Botvina L.S., Belecky E.N., Demina Yu.A., Ivanov I.A. Fatigue fracture of 316L steel manufactured by selective laser melting method. Industrial laboratory. Diagnostics of materials. 2024;90(7):56-67. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-7-56-67

Views: 326


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)