Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Local Asymptotic Normality of Statistical Experiments and Its Role in the Theory of Estimation and Testing of Hypotheses

Abstract

The main problem of the theory of estimation is to find optimal estimates for the unknown parameters. There are two approaches to solving those problems: an approach based on a sample of the finite size and the asymptotic approach, based on a sample of the growing size. The asymptotic approaches can exhibit the properties of optimality as n → ∞. One of them is the approach of asymptotic minimax estimates. This property is called the local asymptotic minimax estimates and is based on the asymptotic behavior of the sequence of statistical experiments at approaching sequences of alternative hypotheses. In this paper we consider the asymptotic normality of the estimates of Bayesian type and asymptotical minimax efficiency of maximum likelihood estimates using the property of the local asymptotic normality of the likelihood ratio statistics in a model ofrandom censoring from both sides.

About the Authors

A. A. Abdushukurov
Национальный университет Узбекистана им. М. Улугбека
Russian Federation


N. S. Nurmukhamedova
Национальный университет Узбекистана им. М. Улугбека
Russian Federation


References

1. Ибрагимов И. А., Хасьминский Р. З. Асимптотическая теория оценивания. -М.: Наука, 1979. - 527 с.

2. Леман Э. Проверка статистических гипотез. - М.: Наука, 1979. - 408 с.

3. Леман Э. Теория точечного оценивания. - М.: Наука, 1991. - 444 с.

4. Русас Дж. Контигуальность вероятностных мер. - М.: Мир, 1975. - 254 с.

5. Hajek J. A characterization of limiting distributions of regular estimates / Z. Wahrscheinlichkeits theorie und Verw. Gebiete. 1970. Vol. 14. P. 323 -330.

6. Hajek J. Local asymptotic minimax and admissibility in estimation / Proc. Sixth. Berkeley Symp. on Math. Statist. and Prob. 1972. Vol. 1. P. 175 - 194.

7. Le Cam L. On some asymptotic properties of the maximum likelihood estimates and related Bayes estimates / Univ. California Publ. Statist. 1953. Vol. 1. P. 277-330.

8. Le Cam L. Locally asymptotically normal families of distributions / Univ. Calif. Publ. Statist. 1960. Vol. 3. P. 37 - 98.

9. Le Cam L. On the assumptions used to prove asymptotic normality of maximum likelihood estimates / Ann. Math. Statist. 1970. Vol. 41. N 3. P. 802 - 828.

10. Van der Vaart A. W. Asymptotic Statistics. - Cambridge Univ. Press, 1998. -443 p.

11. Абдушукуров А. А. Статистика неполных наблюдений. - Ташкент: Университет, 2009. - 296 с.

12. Абдушукуров А. А., Нурмухамедова Н. С. Локальная асимптотическая нормальность в модели конкурирующих рисков / Узб. матем. ж-л. 2012. № 2. С. 5 - 12.

13. Нурмухамедова Н. С. Результаты аппроксимаций для статистик отношения правдоподобия в обобщенной модели случайного цензурирования с двух сторон / Узб. матем. ж-л. 2012. № 1. С. 95 - 106.

14. Нурмухамедова Н. С. Локальная асимптотическая нормальность и ее роль при оценивании неизвестного параметра / Вести НУУз. 2012. №1. С. 166- 169.

15. Abdushukurov A. A., Nurmukhamedova N. S. Local approximate normality of likelihood ratio statistics in competing risks model under random censorship from both sides / Far East J. Theor. Stat. 2013. Vol. 42. N 2. P. 107 - 122.

16. Abdushukurov A. A., Nurmukhamedova N. S. Asymptotics of the generalized statistics for testing the hypothesis under random censoring / Int. J. Res. Rev. Applied Sci. 2012. Vol. 13. Issue 2. P. 567 - 573.

17. Abdushukurov A. A., Nurmukhamedova N. S. Asymptotic minimax efficiency of maximum likelihood estimates in competing risks model / ActaNUUz. 2014. N 1. P. 3 - 8.


Review

For citations:


Abdushukurov A.A., Nurmukhamedova N.S. Local Asymptotic Normality of Statistical Experiments and Its Role in the Theory of Estimation and Testing of Hypotheses. Industrial laboratory. Diagnostics of materials. 2016;82(3):74-79. (In Russ.)

Views: 388


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)