

The experience of iron determination in technogenic materials with a high copper content by the redox titration method: case study of the waelz slag
https://doi.org/10.26896/1028-6861-2024-90-9-24-31
Abstract
Redox titration is one of the most common classical methods widely used in practice for the determination of total iron. A well-known procedure ISO 2597-1 (GOST 32517) includes the decomposition of a sample with dissolution, the reduction of Fe3+ to Fe2+ using a SnCl2 solution and its titration with a K2Cr2O7 solution in the presence of sodium or barium diphenylaminosulfonate as an indicator. We propose to use potassium tetrahydroborate KBH4 as a reducing agent for Fe3+ to Fe2+ instead of SnCl2 to modify a titrimetric method of total iron determination. The features of the well-known and considered methods are studied when using sintering for sample decomposition during the analysis of a large number of samples. Application of the developed method for the analysis of standard samples and technogenic materials with a high copper content, namely, Waelz slag showed a satisfactory accuracy and reproducibility of the obtained values of the total iron content. The results obtained indicate the possibility of the application of this method to the iron determination in the samples with a high copper content without an additional step of the iron separation from copper. A high productivity of the analysis (apart from the absence of the separation stage) is achieved due to the simplicity of the reduction process occurred at room temperature, no need for the control of the added amount of the reducing agent, and the possibility of holding the solutions for a long time before the titration. These advantages along with the no need for using toxic mercury compounds during the analysis make the method attractive for the analysis of a large number of samples.
About the Authors
P. I. GrudinskyRussian Federation
Pavel I. Grudinsky
49, Leninsky prosp., Moscow, 119334
A. A. Yurtaeva
Russian Federation
Anfisa A. Yurtaeva
49, Leninsky prosp., Moscow, 119334
9, Miusskaya pl., Moscow, 125047
V. G. Dyubanov
Russian Federation
Valery G. Dyubanov
49, Leninsky prosp., Moscow, 119334
References
1. Kim J., Sovacool B. K., Bazilian M., et al. Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options / Energy Res. Soc. Sci. 2022. Vol. 89. 102565. DOI: 10.1016/j.erss.2022.102565
2. Sitko R., Zawisza B., Krzykawski T., Malicka E. Determination of chemical composition of siderite in concretions by wavelength-dispersive X-ray spectrometry following selective dissolution / Talanta. 2009. Vol. 77. N 3. P. 1105 – 1110. DOI: 10.1016/j.talanta.2008.08.019
3. Revenko A. G., Pashkova G. V. X-ray fluorescence spectrometry: current status and prospects of development / J. Anal. Chem. 2023. Vol. 78. N 11. P. 1452 – 1458. DOI: 10.1134/s1061934823110072
4. Katakam L. N. R., Aboul-Enein H. Y. Elemental Impurities Determination by ICP-AES / ICP-MS: A review of Theory, Interpretation of Concentration Limits, Analytical Method Development Challenges and Validation Criterion for Pharmaceutical Dosage Forms / Curr. Pharm. Anal. 2020. Vol. 16. N 4. P. 392 – 403. DOI: 10.2174/1573412915666190225160512
5. Karimova T. A., Buchbinder G. L., Romanov N., Kachin S. V. Analysis of iron ores by ICP-AES / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 6. P. 20 – 24 [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-20-24
6. Khan S., Dashora R., Goswami A. K., Purohit D. N. Review of spectrophotometric methods for determination of iron / Rev. Anal. Chem. 2004. Vol. 23. N 1. P. 1 – 74. DOI: 10.1515/revac.2004.23.1.1
7. Jurayev R. S., Choriev A. U., Qaxxorov N. T. The Photometric Determination of Iron(III) with 2-Napthylcarboxymethylene Citrate / Eng. Proc. 2023. Vol. 48. N 1. 49. DOI: 10.3390/CSAC2023-14878
8. Baral A., Pesce S., Yorkshire A. S., et al. Characterisation of iron-rich cementitious materials / Cem. Concr. Res. 2024. Vol. 177. 107419. DOI: 10.1016/j.cemconres.2023.107419
9. Adlim M., Khaldun I., Rahmi M., et al. Determination of iron content within iron sands from Lampanah-Lengah estuary using various analytical methods / IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 348. N 1.012007. DOI: 10.1088/1755-1315/348/1/012007
10. Mohite B. V. Iron Determination — A Review of Analytical Methods / Asian J. Res. Chem. 2011. Vol. 4. N 3. P. 348 – 361.
11. Kroshkina A. B., Stolyarova I. A., Bunakova N. Yu., et al. Determination of titanium, vanadium, chromium and iron-group elements in mineral raw materials. — Moscow: Nedra, 1983. — 184 p. [in Russian].
12. Yang X. J. A rapid and mercury pollution-free redoximetry determination of total iron in copper ore / Talanta. 1994. Vol. 41. N 11. P. 1815 – 1819. DOI: 10.1016/0039-9140(94)E0116-9
13. Hu H., Tang Y., Ying H., et al. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration / Talanta. 2014. Vol. 125. P. 425 – 431. DOI: 10.1016/j.talanta.2014.03.008
14. Grudinsky P. I., Zinoveev D. V., Dyubanov V. G., Kozlov P. A. State of the Art and Prospect for Recycling of Waelz Slag from Electric Arc Furnace Dust Processing / Inorg. Mater. Appl. Res. 2019. Vol. 10. N 5. P. 1220 – 1226. DOI: 10.1134/S2075113319050071
15. Murakami K., Sugawara K., Kawaguchi T. Analysis of Combustion Rate of Various Carbon Materials for Iron Ore Sintering Process / ISIJ Int. 2013. Vol. 53. N 9. P. 1580 – 1587. DOI: 10.2355/isijinternational.53.1580
16. Mohassab Y., Elzohiery M., Chen F., Sohn H. Y. Determination of total iron content in iron ore and DRI: Titrimetric method versus ICP-OES analysis / EPD Congress 2016 / Allanore A., Bartlett L., Wang C., Zhang L., Lee J. (eds). — Cham: Springer, 2016. P. 125 – 133. DOI: 10.1007/978-3-319-48111-1_15
17. Itagaki M., Tagaki M., Mori T., Watanabe K. Active dissolution mechanisms of copper in acidic solutions containing sodium fluoride / Corros. Sci. 1996. Vol. 38. N 4. P. 601 – 610. DOI: 10.1016/0010-938X(95)00149-E
18. Zhigach A. F., Stasinevich D. S. Chemistry of hydrides. — Moscow: Khimiya, 1969. — 676 p [in Russian].
19. Glavee G. N., Klabunde K. J., Sorensen C. M., Hadjipanayis G. C. Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media. Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles / Langmuir. 1994. Vol. 10. N 12. P. 4726 – 4730. DOI: 10.1021/la00024a055
20. Shen J., Li Z., Chen Y. Preparation of Fe – B ultrafine amorphous alloy particles by the reaction of ferric chloride and potassium borohydride in aqueous solution / J. Mater. Sci. Lett. 1994. Vol. 13. P. 1208 – 1210. DOI: 10.1007/BF00241014
21. Kulagina E. S., Fokina L. S. The use of a weight automatic titrator «Titrion» in the certification of the reference materials / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 1. Part II. P. 54 – 56 [in Russian]. DOI: 10.26896/1028-6861-2018-84-1(II)-54-56
22. Cappelletti S., Piacentino D., Fineschi V., et al. Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature / Crit. Rev. Toxicol. 2019. Vol. 49. N 4. P. 1 – 13. DOI: 10.1080/10408444.2019.1621262
23. Kaufman S., DeVoe H. Iron Analysis by Redox Titration: A General Chemistry Experiment / J. Chem. Educ. 1988. Vol. 65. N 2. P. 183. DOI: 10.1021/ed065p183
24. Bhargava O. P., Alexiou A., Hines W. G. Rapid method for total iron determination in iron ores, sinter and related materials without use of mercury compounds / Talanta. 1978. Vol. 25. N 6. P. 357 – 358. DOI: 10.1016/0039-9140(78)80143-X
25. Kolthoff I. M., Noponen G. E. Diphenylamine Sulfonic Acid as a Reagent for the Colorimetric Determination of Nitrates / J. Am. Chem. Soc. 1933. Vol. 55. N 4. P. 1448 – 1453. DOI: 10.1021/ja01331a019
26. Kubrakova I. V., Toropchenova E. S. Microwave sample preparation for geochemical and ecological studies / J. Anal. Chem. 2013. Vol. 68. N 6. P. 467 – 476. DOI: 10.1134/S1061934813060099
Review
For citations:
Grudinsky P.I., Yurtaeva A.A., Dyubanov V.G. The experience of iron determination in technogenic materials with a high copper content by the redox titration method: case study of the waelz slag. Industrial laboratory. Diagnostics of materials. 2024;90(9):24-31. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-9-24-31