

Study of the effect of technological clearances on electrophysical parameters of heated polymer materials
https://doi.org/10.26896/1028-6861-2024-90-9-32-38
Abstract
Among the reasons for the rejection of products made of polymer materials manufactured using HF electrothermy, an important place is occupied by the lack of available reference data on the modes of their processing. The inaccuracy of some electrical parameters, e.g., the dielectric loss tangent (tan δ) and the dielectric constant (ε) are attributed to neglecting the effect of gaps in granular multicomponent polymer materials or technological system, as well as subjective factors of the control process. We present the results of studying the impact of gaps of a technological system on the electrophysical parameters of polymer and composite materials. We studied samples of granular materials «Bimodal polypropylene» and «Basco» stabilizing additive which are used in production of UV-resistant films for packaging. It is shown that a resonance method with the possibility of using two- and three-electrode system is most appropriate when determining the electrophysical parameters of polymer materials, their multicomponent mixtures and the optimal frequency of exposure. Refined (determined with allowance for gaps) electrophysical data for the materials under study obtained at a frequency of 27.12 MHz and heating to 120°C are presented. Comparison of the results obtained with and without taking into account the impact of gaps revealed that the difference reaches up to 12 (for tan δ) and 9% (for ε) of their absolute value. Note that the parameter tan δ has the greatest effect on the heating efficiency. The optimal temperature of polymer heating at which tan δ reaches the maximum value is 50°C. The results obtained can be used to improve the quality of products produced from a wide range of multicomponent polymer and composite materials by optimizing the modes of their electrothermal processing.
About the Authors
N. G. FilippenkoRussian Federation
Nikolay G. Filippenko
15, ul. Chernyshevskogo, Irkutsk, 664075
E. F. Farzaliev
Russian Federation
Emil F. Farzaliev
15, ul. Chernyshevskogo, Irkutsk, 664075
References
1. Tugov I. I., Kosturkina G. I. Chemistry and physics of polymers. — Moscow: Khimiya, 1989. — 430 p. [in Russian].
2. Tager A. A. Physicochemistry of polymers. — Moscow: Nauchny mir, 2007. — 573 p. [in Russian].
3. Butorin D. V., Filippenko N. G., Livshits A. V., et al. Development of a technique for determining structural transformations in polymer materials / Sovr. Tekhnol. Sist. Analiz. Model. 2015. N 4(48). P. 80 – 86 [in Russian].
4. Livshits A. V., Filippenko N. G., Popov S. I., et al. Study of the influence of dielectric elements of the working capacitor of a high-frequency electrothermal installation on the process of processing polymer materials / Sovr. Tekhnol. Sist. Analiz. Model. 2013. N 3(39). P. 270 – 275 [in Russian].
5. Livshits A. V., Larchenko A. G., Filatova S. N. High-frequency electrothermal treatment of non-metallic secondary raw materials / Nauka Obraz. 2014. N 6. P. 55 – 65 [in Russian].
6. Kablov E. N. Strategic directions for the development of materials and technologies for their processing until 2030 / Aviats. Mater. Tekhnol. 2020. N 5. P. 7 – 17 [in Russian].
7. Larchenko A. G., Popov S. I., Filippenko N. G. Determination of physical and mechanical parameters of polymer materials during high-frequency dielectric heating in electrothermal installations / Sovr. Tekhnol. Sist. Analiz. Model. 2013. N 2(38). P. 152 – 157 [in Russian].
8. Dubinsky V. G., Kudryavtsev D. A. Improvement of technologies and equipment for gas pipeline drying after testing / Neft i gas. 2009. N 2/n. P. 20 – 23 [in Russian].
9. Livshits A. V., Mashovich A. Ya. Automation of the process of high-frequency heating of materials on an industrial installation UZP 2500 using the adaptive method. Using an automated installation for laboratory purposes / Sovr. Tekhnol. Sist. Analiz. Model. 2011. N 2(30). P. 193 – 198 [in Russian].
10. Livshits A. V. Automated studies of the process of impregnation of elastomers / Élektrotekhnol. Élektroobor. APK. 2022. Vol. 69. N 1(46). P. 72 – 78 [in Russian]. DOI: 10.22314/2658-4859-2022-69-1-72-78
11. Bakanin D., Bychkovsky V., Butorin D. Development and automation of the device for determination of thermophysical properties of polymers and composites / Advances in Intelligent Systems and Computing. 2020. Vol. 982. P. 731 – 740. DOI: 10.51955/23121327_2022_2_19
12. Safin R. R., Khasanshin R. R., Safin R. G. Study of convective drying of lumber under stationary reduced pressure / Proceedings of the IV International Symposium «Structure, properties and quality of wood». — St. Petersburg: PGLTA, 2004. P. 523 – 526 [in Russian].
13. Safin R. R. Study of the processes of vacuum drying of lumber with convective methods of heat supply / Vestn. TGTU. 2006. Vol. 12. N 4A. P. 978 – 993 [in Russian].
14. Coat J. Polymer heterogeneity in waterborne coatings / Technol. Res. 2020. N 7(1). P. 1 – 21. DOI: 10.1007/s11998-009-9201-5
15. Dumchev I. S., Larchenko A. G., Popov S. I., et al. Restoration of polyamide separators of bearings of the axle box unit of the rolling stock of Russian Railways / Molodoy ucheny. 2012. N 12. P. 48 – 51 [in Russian]. DOI: 10.15826/analitika.2012.19.2.009
16. Efimov V. A., Shvedkova A. K., Korenkova T. G., et al. Study of polymeric structural materials under the influence of climatic factors and loads in laboratory and natural conditions / Proceedings of VIAM. 2021. N 1. Art. 05 [in Russian]. DOI: 10.18577/2307-6046-2022-0-11-16-26
17. Tugov I. I., Kosturkina G. I. Chemistry and physics of polymers. — Moscow: Khimiya, 1989. — 430 p. [in Russian].
18. Tager A. A. Physicochemistry of polymers. — Moscow: Nauchny mir, 2007. — 573 p. [in Russian].
19. Butorin D. V., Filippenko N. G., Livshits A. V., et al. Development of a technique for determining structural transformations in polymer materials / Sovr. Tekhnol. Sist. Analiz. Model. 2015. N 4(48). P. 80 – 86 [in Russian].
20. Livshits A. V., Filippenko N. G., Popov S. I., et al. Study of the influence of dielectric elements of the working capacitor of a high-frequency electrothermal installation on the process of processing polymer materials / Sovr. Tekhnol. Sist. Analiz. Model. 2013. N 3(39). P. 270 – 275 [in Russian].
21. Livshits A. V., Larchenko A. G., Filatova S. N. High-frequency electrothermal treatment of non-metallic secondary raw materials / Nauka Obraz. 2014. N 6. P. 55 – 65 [in Russian].
22. Kablov E. N. Strategic directions for the development of materials and technologies for their processing until 2030 / Aviats. Mater. Tekhnol. 2020. N 5. P. 7 – 17 [in Russian].
23. Larchenko A. G., Popov S. I., Filippenko N. G. Determination of physical and mechanical parameters of polymer materials during high-frequency dielectric heating in electrothermal installations / Sovr. Tekhnol. Sist. Analiz. Model. 2013. N 2(38). P. 152 – 157 [in Russian].
24. Dubinsky V. G., Kudryavtsev D. A. Improvement of technologies and equipment for gas pipeline drying after testing / Neft i gas. 2009. N 2/n. P. 20 – 23 [in Russian].
25. Livshits A. V., Mashovich A. Ya. Automation of the process of high-frequency heating of materials on an industrial installation UZP 2500 using the adaptive method. Using an automated installation for laboratory purposes / Sovr. Tekhnol. Sist. Analiz. Model. 2011. N 2(30). P. 193 – 198 [in Russian].
26. Livshits A. V. Automated studies of the process of impregnation of elastomers / Élektrotekhnol. Élektroobor. APK. 2022. Vol. 69. N 1(46). P. 72 – 78 [in Russian]. DOI: 10.22314/2658-4859-2022-69-1-72-78
27. Bakanin D., Bychkovsky V., Butorin D. Development and automation of the device for determination of thermophysical properties of polymers and composites / Advances in Intelligent Systems and Computing. 2020. Vol. 982. P. 731 – 740. DOI: 10.51955/23121327_2022_2_19
28. Safin R. R., Khasanshin R. R., Safin R. G. Study of convective drying of lumber under stationary reduced pressure / Proceedings of the IV International Symposium «Structure, properties and quality of wood». — St. Petersburg: PGLTA, 2004. P. 523 – 526 [in Russian].
29. Safin R. R. Study of the processes of vacuum drying of lumber with convective methods of heat supply / Vestn. TGTU. 2006. Vol. 12. N 4A. P. 978 – 993 [in Russian].
30. Coat J. Polymer heterogeneity in waterborne coatings / Technol. Res. 2020. N 7(1). P. 1 – 21. DOI: 10.1007/s11998-009-9201-5
31. Dumchev I. S., Larchenko A. G., Popov S. I., et al. Restoration of polyamide separators of bearings of the axle box unit of the rolling stock of Russian Railways / Molodoy ucheny. 2012. N 12. P. 48 – 51 [in Russian]. DOI: 10.15826/analitika.2012.19.2.009
32. Efimov V. A., Shvedkova A. K., Korenkova T. G., et al. Study of polymeric structural materials under the influence of climatic factors and loads in laboratory and natural conditions / Proceedings of VIAM. 2021. N 1. Art. 05 [in Russian]. DOI: 10.18577/2307-6046-2022-0-11-16-26
Review
For citations:
Filippenko N.G., Farzaliev E.F. Study of the effect of technological clearances on electrophysical parameters of heated polymer materials. Industrial laboratory. Diagnostics of materials. 2024;90(9):32-38. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-9-32-38