Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Method for assessing the durability of structures under stationary and non-stationary random loading using variational mode decomposition (VMD)

https://doi.org/10.26896/1028-6861-2024-90-9-63-74

Abstract

In the era of digital transformation, most devices are equipped with a variety of sensors, which provide information to be used in developing intelligent models for predicting the fatigue life. The development of digital models of real objects for fatigue life estimation faces the lack of algorithms for performing such an estimation. The problem arises in the adaptive and automatic analysis of signals from real sensors installed on the object and their subsequent processing to estimate the fatigue life of the object. We propose a new method for assessing the fatigue life of structures based on application of the adaptive method of variational mode decomposition to signals gained from sensors, including non-stationary ones. Variational mode decomposition involves decomposition of an initial complex random process into simpler random processes (modes) that are stationary and narrowband. An original method of summarizing damage resulted from the action of the modes obtained as a result of the decomposition is used. The developed method can be used as an algorithmic support for the generation of digital doubles of the residual lifetimes of natural products. The proposed method is compared with the «rainflow» method in the time domain. Different realizations of random stationary and non-stationary signals with different bandwidths are compared numerically. In addition, the traditional frequency methods of Dirlik and Benasciutti have been compared with the «rainflow» method. The analysis showed good results for the proposed method, i.e., the error was smaller compared to traditional frequency methods, especially for non-stationary processes.

About the Authors

A. V. Erpalov
South Ural State University (national research university)
Russian Federation

Aleksey V. Erpalov

76, prosp. Lenina, Chelyabinsk, 454080



K. A. Khoroshevskii
South Ural State University (national research university)
Russian Federation

Kirill A. Khoroshevskii

76, prosp. Lenina, Chelyabinsk, 454080



E. A. Rumyanceva
South Ural State University (national research university)
Russian Federation

Elena A. Rumyanceva

76, prosp. Lenina, Chelyabinsk, 454080



I. V. Gadolina
Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences
Russian Federation

Irina V. Gadolina

4, Maly Kharitonyevsky per., Moscow, 101990



References

1. Benasciutti D., Tovo R. Frequency-based fatigue analysis of non-stationary switching random loads / Fatigue Fract. Eng. Mater. Struct. 2007. Vol. 30. N 11. P. 1016 – 1029. DOI: 10.1111/j.1460-2695.2007.01171.x

2. Trapp A., Wolfsteiner P. Fatigue assessment of non-stationary random loading in the frequency domain by a quasi-stationary Gaussian approximation / Int. J. Fatigue. 2021. Vol. 148. 106214. DOI: 10.1016/j.ijfatigue.2021.106214

3. Savkin A. N., Sedov A. A. Assessment of steel damaging upon a multi-stage block loading / Industr. Lab. Mater. Diagn. 2011. Vol. 7. N 9. P. 66 – 70 [in Russian].

4. Zorman A., Slavič J., Boltežar M. Short-time fatigue-life estimation for non-stationary processes considering structural dynamics / Int. J. Fatigue. 2021. Vol. 147. 106178. DOI: 10.1016/j.ijfatigue.2021.106178

5. Orlando A., Pagnini L., Repetto M. P. Structural response and fatigue assessment of a small vertical axis wind turbine under stationary and non-stationary excitation / Renew. Energy. 2021. Vol. 170. P. 251 – 266. DOI: 10.1016/j.renene.2021.01.123

6. Dragomiretskiy K., Zosso D. Variational Mode Decomposition / IEEE Trans. Signal Process. 2014. Vol. 62. N 3. P. 531 – 544. DOI: 10.1109/TSP.2013.2288675

7. Niu Q., Yang S. xi, Li X. lin. An empirical mode decomposition-based frequency-domain approach for the fatigue analysis of nonstationary processes / Fatigue Fract. Eng. Mater. Struct. 2018. Vol. 41. N 9. P. 1980 – 1996. DOI: 10.1111/ffe.12836

8. Li R., et al. A novel approach for stress cycle analysis based on empirical mode decomposition / MFPT 2018 — Intell. Technol. Equip. Hum. Perform. Monit. Proc. 2018. P. 4 – 12.

9. Fu J., et al. An Improved VMD-Based Denoising Method for Time Domain Load Signal Combining Wavelet with Singular Spectrum Analysis / Math. Probl. Eng. 2020. Vol. 2020. 1485937. DOI: 10.1155/2020/1485937

10. Soman R. Semi-automated methodology for damage assessment of a scaled wind turbine tripod using enhanced empirical mode decomposition and statistical analysis / Int. J. Fatigue. 2020. Vol. 134. 105475. DOI: 10.1016/j.ijfatigue.2020.105475

11. Huang N. E., et al. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis / Proc. R. Soc. A Math. Phys. Eng. Sci. 1998. Vol. 454. N 1971. P. 903 – 995. DOI: 10.1098/rspa.1998.0193

12. Wu Z., Huang N. E. Ensemble empirical mode decomposition: a noise-assisted data analysis method / Adv. Adapt. Data Anal. 2009. Vol. 1. N 1. P. 1 – 41. DOI: 10.1142/S1793536909000047

13. Flandrin P., Torres E., Colominas M. A. A complete ensemble empirical mode decomposition with adaptive noise / ICASSP 2011 — International Conference on Acoustics, Speech and Signal Processing. 2011. P. 4144 – 4147.

14. Zheng J., Cheng J., Yang Y. Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing / Signal Processing. 2014. Vol. 96. P. 362 – 374. DOI: 10.1016/j.sigpro.2013.09.013

15. Lang X., et al. Median ensemble empirical mode decomposition / Signal Processing. 2020. Vol. 176. 107686. DOI: 10.1016/j.sigpro.2020.107686

16. Mandic D. P., et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis / IEEE Signal Process. Mag. 2013. Vol. 30. N 6. P. 74 – 86. DOI: 10.1109/MSP.2013.2267931

17. Rehman N., Mandic D. P. Multivariate empirical mode decomposition / Proc. R. Soc. A Math. Phys. Eng. Sci. 2010. Vol. 466. N 2117. P. 1291 – 1302. DOI: 10.1098/rspa.2009.0502

18. Bertsekas D. P. Constrained Optimization and Lagrange Multiplier Methods. — Elsevier, 1982. — 395 p. DOI: 10.1016/C2013-0-10366-2

19. Endo T. Rain flow method, the proposal and the applications / Kyushu Inst. Technol. Acad. Repos. 1974. Vol. 28. P. 33 – 62.

20. Mrsnik M., Slavic J., Boltezar M. Frequency-domain methods for a vibration-fatigue-life estimation — Application to real data / Int. J. Fatigue. 2013. Vol. 47. P. 8 – 17. DOI: 10.1016/j.ijfatigue.2012.07.005

21. Braccesi C., Cianetti F., Tomassini L. Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components / Int. J. Fatigue. 2015. Vol. 70. P. 417 – 427. DOI: 10.1016/j.ijfatigue.2014.07.005

22. Muñiz-Calvente M., et al. A comparative review of time- and frequency-domain methods for fatigue damage assessment / Int. J. Fatigue. 2022. Vol. 163. 107069. DOI: 10.1016/j.ijfatigue.2022.107069

23. Gadolina I. V., Lisachenko N. G., Svirskiy Yu. A., Dubin D. A. The choice of the sampling frequency and optimal method of signal digital processing in the problems considering random loading process for assessing durability / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 7. P. 64 – 72 [in Russian]. DOI: 10.26896/1028-6861-2019-85-7-64-72

24. Marques J. M. E., Benasciutti D. Variance of the fatigue damage in non-Gaussian stochastic processes with narrow-band power spectrum / Struct. Saf. 2021. Vol. 93. 102131. DOI: 10.1016/j.strusafe.2021.102131

25. Marques J. M. E., Benasciutti D. More on variance of fatigue damage in non-Gaussian random loadings — Effect of skewness and kurtosis / Procedia Struct. Integr. 2020. Vol. 25. N 2019. P. 101 – 111. DOI: 10.1016/j.prostr.2020.04.014

26. Marques J. M. E., Benasciutti D., Tovo R. Variability of the fatigue damage due to the randomness of a stationary vibration load / Int. J. Fatigue. 2020. Vol. 141. 105891. DOI: 10.1016/j.ijfatigue.2020.105891

27. Benasciutti D., Marques J. M. E. The use of fractional order statistics for estimating nonparametric confidence intervals for quantiles of the fatigue damage computed in service random loadings / IOP Conf. Ser. Mater. Sci. Eng. 2023. Vol. 1275. N 1. 012020. DOI: 10.1088/1757-899x/1275/1/012020

28. Miner M. A. Cumulative Damage in Fatigue / J. Appl. Mech. 1945. Vol. 12. N 3. P. A159 – A164. DOI: 10.1115/1.4009458

29. Kogaev V. P., Mahutov N. A., Gusenko A. P. Calculations of machine parts and structures for strength and durability. — Moscow: Mashinostroenie, 1985. — 224 p. [in Russian].

30. Marco S. M., Starkey W. L. A Concept of Fatigue Damage / J. Fluids Eng. 1954. Vol. 76. N 4. P. 627 – 632. DOI: 10.1115/1.4014922

31. Leis B. A Nonlinear History-Dependent Damage Model for Low Cycle Fatigue / Low Cycle Fatigue. — West Conshohocken, PA, USA: ASTM International, 1988. P. 143 – 143 – 17. DOI: 10.1520/STP24480S

32. Xiaode N., Guangxia L., Hao L. Hardening law and fatigue damage of a cyclic hardening metal / Eng. Fract. Mech. 1987. Vol. 26. N 2. P. 163 – 170. DOI: 10.1016/0013-7944(87)90194-9

33. Chaboche J. L., Lesne P. M. A Non-Linear Continuous Fatigue Damage Model / Fatigue Fract. Eng. Mater. Struct. 1988. Vol. 11. N 1. P. 1 – 17. DOI: 10.1111/j.1460-2695.1988.tb01216.x

34. Gadolina I. V., Makhutov N. A., Erpalov A. V. Varied approaches to loading assessment in fatigue studies / Int. J. Fatigue. 2021. Vol. 144. 106035. DOI: 10.1016/j.ijfatigue.2020.106035

35. Pelayo F., Aenlle M. A comparative review of time- and frequency-domain methods for fatigue damage assessment / Int. J. Fatigue. 2022. Vol. 163. 107069. DOI: 10.1016/j.ijfatigue.2022.107069

36. Dirlik T. Application of Computers in Fatigue Analysis. Ph.D. Thesis. — Coventry: University of Warwick, 1985. — 234 p.

37. Benasciutti D., Tovo R. Spectral methods for lifetime prediction under wide-band stationary random processes / Int. J. Fatigue. 2005. Vol. 27. N 8. P. 867 – 877. DOI: 10.1016/j.ijfatigue.2004.10.007

38. Madsen H. O., Krenk S., Lind N. C. Methods of Structural Safety. 2nd edition. — Dover Publications, 2006. — 416 p.

39. Niesłony A., Böhm M. Mean Stress Effect Correction in Frequency-domain Methods for Fatigue Life Assessment / Procedia Eng. 2015. Vol. 101. P. 347 – 354. DOI: 10.1016/j.proeng.2015.02.042

40. Niesłony A., Böhm M. Frequency-domain fatigue life estimation with mean stress correction / Int. J. Fatigue. 2016. Vol. 91. P. 373 – 381. DOI: 10.1016/j.ijfatigue.2016.02.031

41. Benasciutti D., Tovo R. On fatigue cycle distribution in non-stationary switching loadings with Markov chain structure / Probabilistic Eng. Mech. 2010. Vol. 25. N 4. P. 406 – 418. DOI: 10.1016/j.probengmech.2010.05.002

42. Wolfsteiner P. Fatigue assessment of non-stationary random vibrations by using decomposition in Gaussian portions / Int. J. Mech. Sci. 2017. Vol. 127. P. 10 – 22. DOI: 10.1016/j.ijmecsci.2016.05.024

43. Braccesi C., Cianetti F., Lori G., Pioli D. The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress / Int. J. Fatigue. 2009. Vol. 31. N 4. P. 766 – 775. DOI: 10.1016/j.ijfatigue.2008.03.007

44. Slavič J. et al. Non-stationarity and non-gaussianity in vibration fatigue / Conf. Proc. Soc. Exp. Mech. Ser. 2020. Vol. 97. P. 73 – 76. DOI: 10.1007/978-3-030-12676-6_7

45. Wolfsteiner P., Trapp A. Fatigue life due to non-Gaussian excitation — An analysis of the Fatigue Damage Spectrum using Higher Order Spectra / Int. J. Fatigue. 2019. Vol. 127. P. 203 – 216. DOI: 10.1016/j.ijfatigue.2019.06.005

46. Gao S., et al. Assessment of fatigue damage induced by Non-Gaussian bimodal processes with emphasis on spectral methods / Ocean Eng. 2021. Vol. 220. 108489. DOI: 10.1016/j.oceaneng.2020.108489

47. Dirlik T., Benasciutti D. Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective / Metals. 2021. Vol. 11. N 9. 1333. DOI: 10.3390/met11091333

48. Park J. B., Song C. Y. Fatigue damage model comparison with formulated tri-modal spectrum loadings under stationary Gaussian random processes / Ocean Eng. 2015. Vol. 105. P. 72 – 82. DOI: 10.1016/j.oceaneng.2015.05.039

49. Trapp A., Wolfsteiner P. Fatigue assessment of non-stationary random loading in the frequency domain by a quasi-stationary Gaussian approximation / Int. J. Fatigue. 2021. Vol. 148. 106214. DOI: 10.1016/j.ijfatigue.2021.106214

50. Kihl D. Stochastic fatigue damage accumulation under broadband loadings / Int. J. Fatigue. 1995. Vol. 17. N 5. P. 321 – 329. DOI: 10.1016/0142-1123(95)00015-L

51. Liu Y., et al. A unified mean stress correction model for fatigue thresholds prediction of metals / Eng. Fract. Mech. 2020. Vol. 223. 106787. DOI: 10.1016/j.engfracmech.2019.106787

52. Oh G. Effective stress and fatigue life prediction with mean stress correction models on a ferritic stainless steel sheet / Int. J. Fatigue. 2022. Vol. 157. 106707. DOI: 10.1016/j.ijfatigue.2021.106707

53. Petrucci G., Zuccarello B. Fatigue life prediction under wide band random loading / Fatigue Fract. Eng. Mater. Struct. 2004. Vol. 27. N 12. P. 1183 – 1195. DOI: 10.1111/j.1460-2695.2004.00847.x


Review

For citations:


Erpalov A.V., Khoroshevskii K.A., Rumyanceva E.A., Gadolina I.V. Method for assessing the durability of structures under stationary and non-stationary random loading using variational mode decomposition (VMD). Industrial laboratory. Diagnostics of materials. 2024;90(9):63-74. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-9-63-74

Views: 239


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)