Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of rare earth elements in synthetic calcium phosphates by high-resolution continuum source electrothermal atomic absorption spectrometry

https://doi.org/10.26896/1028-6861-2024-90-10-15-23

Abstract

Ceramic, cement and composite biomaterials have been developed based on hydroxyapatites (HA) and tricalcium phosphates (TCP), which are analogous in phase and chemical composition to the mineral component of bone tissue. The crystal structures of HA and TCP are arranged in isomorphic substitutions. Recently, research has focused on the modification of HA and TCP structures with ions of various metals, including rare earth ions (REEs), with the aim of creating materials with a range of beneficial properties for medical applications. REEs are known to have a number of useful properties, including antibacterial, antitumour, catalytic, magnetic and luminescent properties. The replacement of some of the Ca ions in the structures of HA and TCP with REE ions therefore makes it possible to obtain a material with biocompatibility and biological activity, giving it the required properties depending on the REE used and its concentration. In order to achieve the specified properties, it is necessary to control not only the structure (phase composition, lattice parameters of the powders) and the presence of characteristic functional groups, but also the chemical elemental composition. Modifications of hydroxyapatites and tricalcium phosphates containing from one to several different alloying elements are currently being developed. Various analytical methods are used for this purpose, including X-ray, atomic emission and a number of others. This article is devoted to the study of the analytical capabilities of the method of atomic absorption spectrometry with electrothermal atomization and a continuous spectrum source in relation to the determination of Eu and Yb in hydroxyapatites and tricalcium phosphates. The article considers the optimal conditions and modes of analysis, including temperature-time programs, the use of modifiers, the construction of calibration curves, and other factors that can be adjusted for more precise results. The results demonstrated the possibility of simultaneous determination of both Eu and Yb in the concentration range of 0.09 to 2 wt.%, with a relative standard deviation of less than 6 rel.%.

About the Authors

M. S. Doronina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS)
Russian Federation

Marina S. Doronina

31-1, Leninsky prosp., Moscow, 119991



A. S. Shevchenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Anna S. Shevchenko

31-1, Leninsky prosp., Moscow, 119991; 1-3, Leninskie Gory, Moscow, 119991



T. D. Ksenofontova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); National University of Science and Technology «MISIS»
Russian Federation

Tatyana D. Ksenofontova

31-1, Leninsky prosp., Moscow, 119991; 4, Leninskii prosp., Moscow, 119049



V. B. Baranovskaia
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); National University of Science and Technology «MISIS»
Russian Federation

Vasilisa B. Baranovskaia

31-1, Leninsky prosp., Moscow, 119991; 4, Leninskii prosp., Moscow, 119049



References

1. Radulescu D.-E., Vasile O. R., Andronescu E., Ficai A. Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering / Int. J. Mol. Sci. 2023. Vol. 24. N 17. 13157. DOI: 10.3390/ijms241713157

2. Stīpniece L., Ramata-Stunda A., Vecstaudža J., et al. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles / ACS Appl. Bio Mater. 2023. Vol. 6. N 12. P. 5264 – 5281. DOI: 10.1021/acsabm.3c00539

3. Garbo C., Locs J., D’Este M., et al. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration / Int. J. Nanomed. 2020. Vol. 15. P. 1037 – 1058. DOI: 10.2147/ijn.s226630

4. Shi H., Zhou Z., Li W., et al. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction / Crystals. 2021. Vol. 11. N 2. P. 149. DOI: 10.3390/cryst11020149

5. Verma R., Mishra S. R., Gadore V., Ahmaruzzaman M. Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications / Adv. Colloid Interface Sci. 2023. Vol. 315. 102890. DOI: 10.1016/j.cis.2023.102890

6. De Lama-Odría M. D. C., Del Valle L. J., Puiggalí J. Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer / Int. J. Mol. Sci. 2022. Vol. 23. N 19. 11352. DOI: 10.3390/ijms231911352

7. Bazin T., Magnaudeix A., Mayet R., et al. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics / Ceram. Int. 2021. Vol. 47. N 10. Part A. P. 13644 – 13654. DOI: 10.1016/j.ceramint.2021.01.225

8. Sidorov I. D., Minnebaev T. M., Oleinikova E. I., et al. Luminescence of Eu3+ doped calcium hydroxyapatite and tricalcium phosphate powders / Tech. Phys. 2024. Vol. 69. N 3. P. 428 – 432.

9. Nikitina Yu. O., Petrakova N. V., Kozyukhin S. A., et al. Thermal Stability and Luminescence Properties of Cerium-Containing Tricalcium Phosphate / Inorg. Mater. 2023. Vol. 59. N 4. P. 394 – 403. DOI: 10.1134/s002016852304009x

10. Nardi M. V., Timpel M., Biondani E., et al. Synthesis and characterization of Nd3+ – Yb3+ doped hydroxyapatite nanoparticles / Opt. Mater.: X. 2021. Vol. 12. 100118. DOI: 10.1016/j.omx.2021.100118

11. Mondal S., Nguyen V. T., Park S., et al. Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications / Ceramics International. 2020. Vol. 46. N 10. Part B. P. 16020 – 16031. DOI: 10.1016/j.ceramint.2020.03.152.

12. Al-Shahrabalee S. Q., Jaber H. A. Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for Biomaterials Applications / Bioinorg. Chem. Appl. 2023. 7856300. DOI: 10.1155/2023/7856300

13. Yamada I., Shiba K., Galindo T. G. P., Tagaya M. Drug Molecular Immobilization and Photofunctionalization of Calcium Phosphates for Exploring Theranostic Functions / Molecules. 2022. Vol. 27. 5916. DOI: 10.3390/molecules27185916

14. Gu M., Li W., Jiang L., Li X. Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications / Acta Biomater. 2022. Vol. 148. P. 22 – 43. DOI: 10.1016/j.actbio.2022.06.006

15. Wu L., Yang F., Xue Y., et al. The biological functions of europium-containing biomaterials: A systematic review / Mater. Today Bio. 2023. Vol. 24. N 19. 100595. DOI: 10.1016/j.mtbio.2023.100595

16. De Lama-Odría M. D. C., Valle L. J. D., Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications / Int. J. Mol. Sci. 2023. Vol. 24. N 4. 3446. DOI: 10.3390/ijms24043446

17. Ibrahim D. M., Mostafa A. A., Korowash S. I. Chemical characterization of some substituted hydroxyapatites / Chem. Cent. J. 2011. Vol. 5. 74. DOI: 10.1186/1752-153X-5-74

18. Predoi D., Iconaru S. L., Predoi M. V., et al. Zinc doped hydroxyapatite thin films prepared by sol-gel spin coating procedure / Coatings. 2019. Vol. 9. N 3. 156. DOI: 10.3390/coatings9030156

19. Samoilova A. A., Petrakova N. V., Andreeva N. A., et al. Quantification of Calcium, Phosphorus, and Cerium in Novel Biocompatible Materials by Total Reflection X-Ray Fluorescence Spectroscopy / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 5. P. 14 – 18 [in Russian]. DOI: 10.26896/1028-6861-2023-89-5-14-18

20. Kavasi R. M., Coelho C. C., Platania V., et al. In vitro biocompatibility assessment of nano-hydroxyapatite / Nanomaterials. 2021. Vol. 11. N 5. 1152. DOI: 10.3390/nano11051152

21. Fomina A. A., Demina, A. Yu., Andreeva N. A., et al. Quantification of lithium and calcium in novel hydroxyapatite-based materials for osteoplasty using flame photometry / Industr. Lab. Mater. Diagn. 2024. Vol. 90. N 6. P. 23 – 26 [in Russian]. DOI: 10.26896/1028-6861-2024-90-6-23-26

22. Gudzenko L. V., Sheina T. V. Extractive separation of selenium for atomic-absorption determination in purified sulfur / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 2. P. 5 – 12 [in Russian]. DOI: 10.26896/1028-6861-2021-87-2-5-12

23. López-García I., Muñoz-Sandoval M. J., Hernández-Córdoba M. Dispersive micro-solid phase extraction with a magnetic nanocomposite followed by electrothermal atomic absorption measurement for the speciation of thallium / Talanta. 2021. Vol 228. 122206. DOI: 10.1016/j.talanta.2021.122206

24. İsen F., Kaygili O., Bulut N., et al. Experimental and theoretical characterization of Dy-doped hydroxyapatites / J. Aust. Ceram. Soc. 2023. Vol. 59. P. 849 – 864. DOI: 10.1007/s41779-023-00878-8

25. Butcher D. J. Recent advances in graphite furnace atomic absorption spectrometry: a review of fundamentals and applications / Appl. Spectrosc. Rev. 2023. Vol. 59. N 2. P. 247 – 275. DOI: 10.1080/05704928.2023.2192268

26. Pupyshev A. A. The High-Resolution Continiuum Source Atomic Absorption Spectrometers / Analit. Kontrol’. 2008. Vol. 12. N 3-4. P. 64 – 92 [in Russian].

27. Katskov D. A. An Introduction to Multi-element Atomic Absorption Analysis / Analit. Kontrol’. 2018. Vol. 22. N 4. P. 350 – 442 [in Russian]. DOI: 10.15826/analitika.2018.22.4.001

28. Burylin M. Yu., Kopeiko E. S. Determination of As, Bi, Pb, Sb, Sn in copper, nickel and alloys on their base by electrothermal atomization atomic absorption spectrometry (ETAAS) / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 1. P. 12 – 22 [in Russian]. DOI: 10.26896/1028-6861-2021-87-1-12-22

29. Gómez-Nieto B., Isabel-Cabrera C., Gismera M. J., et al. An environmentally friendly approach for the characterization of construction materials: determination of trace, minor, and major elements by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry / Anal. Methods. 2023. Vol. 15. N 9. P. 1105 – 1115. DOI: 10.1039/d2ay02036j

30. Eskina V. V., Baranovskaya V. B., Karpov Yu. A., Filatova D. G. High-Resolution Continuum Source Atomic Absorption Spectrometry: A Review of Current Applications / Russ. Chem. Bull. 2020. Vol. 69. N 1. P. 1 – 16. DOI: 10.1007/s11172-020-2718-6

31. Filatova D. G., Es’kina V. V., Baranovskaya V. B., Karpov Yu. A. Present-Day Possibilities of High-Resolution Continuous-Source Electrothermal Atomic Absorption Spectrometry / J. Anal. Chem. 2020. Vol. 75. N 5. P. 563 – 568. DOI: 10.1134/S1061934820050044

32. Shtin T. N., Gurvich V. B., Galasheva O. E., et al. Determination of polyorganosiloxanes (by silicon) in water by extraction high-resolution continuum source electrothermal atomic absorption spectrometry / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 1. Part. I. P. 14 – 24 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-I-14-24

33. Bustos D. E., Toro J. A., Briceño M., Rivas R. E. Use of slow atomization ramp in high resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous determination of Cd and Ni in slurry powdered chocolate samples / Talanta. 2022. Vol. 247. 123547. DOI: 10.1016/j.talanta.2022.123547

34. Gómez-Nieto B., Gismera M. J., Sevilla M. T., Procopio J. R. Direct solid sampling of biological species for the rapid determination of selenium by high-resolution continuum source graphite furnace atomic absorption spectrometry / Anal. Chim. Acta. 2022. Vol. 1202. 339637. DOI: 10.1016/j.aca.2022.339637

35. Butcher D. J. Innovations and developments in graphite furnace atomic absorption spectrometry (GFAAS) / Appl. Spectrosc. Rev. 2021. Vol. 58. N 1. P. 65 – 82. DOI: 10.1080/05704928.2021.1919896

36. Bokk D. N., Labusov V. A., Boldova S. S. Assessment of the possibility of determining the concentrations of rare earth elements on an atomic absorption spectrometer with a continuous spectrum source GRAND-AAS / Proc. of XVI Int. Symposium «Application of MAES analyzers in industry». 2018. P. 150 – 154 [in Russian].

37. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Tekhnosfera, 2009. P. 704 – 708 [in Russian].

38. Varma A. CRC Handbook of Furnace Atomic Absorption Spectroscopy. — Boca Rooton: CRC Press, 2017. — 442 p.

39. Liu H., Cui H., Wang Y., et al. Accurate Determination of Trace Cadmium in Soil Samples with Graphite Furnace Atomic Absorption Spectrometry Using Metal-Organic Frameworks as Matrix Modifiers / Appl. Spectrosc. 2023. Vol. 77. N 2. P. 131 – 139. DOI: 10.1177/00037028221141709

40. Shtin T. N., Neudachina L. K., Shtin S. A. Determination of the dissolved forms of silicon in natural drinking water using high-resolution continuum-source electrothermal atomic absorption spectrometry / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 3. P. 11 – 19 [in Russian]. DOI: 10.26896/1028-6861-2021-87-3-11-19

41. Acar O. The use of chemical modifiers in electrothermal atomic absorption spectrometry / Appl. Spectrosc. Rev. 2022. Vol. 59. N 3. P. 340 – 354. DOI: 10.1080/05704928.2022.2147537

42. Stevens B. J., Hare D. J., Volitakis I., et al. Direct determination of zinc in plasma by graphite furnace atomic absorption spectrometry using palladium/magnesium and EDTA matrix modification with high temperature pyrolysis / J. Anal. At. Spectrom. 2017. Vol. 32. N 4. P. 843 – 847. DOI: 10.1039/C7JA00033B

43. Dragun Z., Raspor B. Direct determination of Cd in NaCl containing metallothionein fractions of different red mullet tissues by GF-AAS / J. Anal. At. Spectrom. 2005. Vol. 20. N 10. P. 1121 – 1123. DOI: 10.1039/B504680G

44. Volynskii A. B. Chemical modifiers in modern electrothermal atomic absorption spectrometry / J. Anal. Chem. 2003. Vol. 58. P. 905 – 921. DOI: 10.1023/A:1026115330513


Review

For citations:


Doronina M.S., Shevchenko A.S., Ksenofontova T.D., Baranovskaia V.B. Determination of rare earth elements in synthetic calcium phosphates by high-resolution continuum source electrothermal atomic absorption spectrometry. Industrial laboratory. Diagnostics of materials. 2024;90(10):15-23. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-10-15-23

Views: 219


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)