Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Degradation of steel 20 during cathodic polarization and hydrogen embrittlement of steam boiler screen pipes during operation

https://doi.org/10.26896/1028-6861-2024-90-10-46-55

Abstract

The paper examines the differences in the properties of new pipes, pipes artificially saturated with hydrogen and boiler screen pipes after long-term operation. The embrittlement process was studied by observing changes in the microstructural structure, mechanical properties and identifying the mechanism of hydrogen attack on the objects under study. It was discovered that there was no decarbonization characteristic of natural saturation with hydrogen and a decrease in the ultimate tensile strength of artificially saturated pipes. The nature of cracking was also different — transcrystalline with artificial saturation and intercrystalline with natural saturation. At the same time, the nature of the fractures — with areas of hydrogen fragility — and the average concentrations of accumulated hydrogen in pipes artificially hydrogenated and hydrogenated during operation were identical. Significant differences in the physical and mechanical properties of all three types of pipes have been recorded, which makes it impossible to transfer the results obtained with model samples artificially saturated with hydrogen to actually operated objects.

About the Authors

V. V. Shalagaev
«Scientific and Diagnostic Center «Research and Production Firm «Russian Laboratory»; Institute of Problems of Mechanical Science of the Russian Academy of Sciences
Russian Federation

Vladimir V. Shalagaev

9, Pushkarskii pereulok, St. Petersburg, 197101; 61, Bolshoi prospekt, Vasil’evskii ostrov, St. Petersburg, 199178



A. V. Nechaeva
«Scientific and Diagnostic Center «Research and Production Firm «Russian Laboratory»
Russian Federation

Anna V. Nechaeva

9, Pushkarskii pereulok, St. Petersburg, 197101



V. A. Polyanskiy
Institute of Problems of Mechanical Science of the Russian Academy of Sciences
Russian Federation

Vladimir A. Polyanskiy

61, Bolshoi prospekt, Vasil’evskii ostrov, St. Petersburg, 199178



A. M. Polyanskiy
«NPK EPT»
Russian Federation

Anatoliy M. Polyanskiy

29, Politekhnicheskaya ul, St. Petersburg, 194021



Yu. A. Yakovlev
Institute of Problems of Mechanical Science of the Russian Academy of Sciences
Russian Federation

Yuriy A. Yakovlev

61, Bolshoi prospekt, Vasil’evskii ostrov, St. Petersburg, 199178

 



References

1. Dick I. B. Experiences with hydrogen embrittlement in the Consolidated Edison System / Journal of Engineering for Gas Turbines and Power. 1964. Vol. 86. N 3. P. 327 – 340. DOI: 10.1115/1.3677598

2. Partridge E. P. Hydrogen damage in power boilers / Journal of Engineering for Gas Turbines and Power. 1964. Vol. 86. N 3. P. 311 – 320. DOI: 10.1115/1.3677593

3. During E. D. D., ed. Corrosion atlas: a collection of illustrated case histories. — Elsevier, 2018. — 687 p.

4. Djukic M. B., Zeravcic V. S., Bakic G. M., et al. Hydrogen damage of steels: a case study and hydrogen embrittlement model / Engineering Failure Analysis. 2015. N 58. P. 485 – 498. DOI: 10.1016/j.engfailanal.2015.05.017

5. Djukic M., Bakic G., Sijacki-Zeravcic V., et al. Hydrogen embrittlement of industrial components: prediction, prevention and models / Corrosion. 2016. Vol. 72. N 7. P. 943 – 961. DOI: 10.5006/1958

6. Chernov I. P., Cherdancev Yu. P., Lider A. M., Gagarin G. V. Physical properties of hydrogen-saturated metals and alloys: specialized physics workshop. — Tomsk: Izd. Tomsk. politekhn. univ., 2009. — 250 p. [in Russian].

7. Archakov Yu. I. Hydrogen corrosion of steel. — Moscow: Metallurgiya, 1985. — 192 p. [in Russian].

8. Lee A. C., Parakh A., Sleugh A., et al. Detection of voids in hydrogen embrittled iron using transmission X-ray microscopy / International journal of hydrogen energy. 2023. N 48. P. 1968 – 1978. DOI: 10.1016/j.ijhydene.2022.10.059

9. Denisov E. A., Kompaniets T. N., Murzinova M. A., Yukhimchuk A. A., Jr. Accumulation and transport of hydrogen in ferritic-martensitic steel RUSFER-EK-181 / Technical Physics. 2013. Vol. 83. N 6. P. 38 – 44 [in Russian].

10. Shashkova L. V., Manakov N. A., Kozik E. S., Svidenko E. V. The effect of diffusion-mobile and combined hydrogen on hydrogen brittleness of steel / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 8. P. 59 – 66 [in Russian]. DOI: 10.26896/1028-6861-2019-85-8-59-66

11. Suranov G. I., Latyshev A. A., Karmanova O. M., Vasil’ev V. V. Study of the Process of Cathode Hydrogenation of the Samples and Composition of Evolved Gas. / Indust. Lab. Mater. Diagn. 2015. Vol. 81. N 2. P. 20 – 24 [in Russian].

12. Mirzoev A. A., Mirzaev D. A., Rakitin M. S. Effect of impurities on the dissolution of hydrogen in bcc iron / Vestn. YuUrGU. Ser. Matem. Mekh. Fiz. 2011. Vol. 10. N 4. P. 77 – 83 [in Russian]. DOI: 10.14529/met160405

13. Mirzaev D. A., Okishev K. Yu., Shaburov A. D. Interaction of hydrogen with substitutional impurities in alpha iron / Vestn. MGTU im. G. I. Nosova. 2011. N 1. P. 39 – 42 [in Russian].

14. Beloglazov S. M. Hydrogenation of steel during electrochemical processes. — Leningrad: Izd. Leningrad. univ., 1975. — 412 p. [in Russian].

15. Mirzaev D. A., Yakovleva I. L., Tereshhenko N. A., et al. Possibilities of trapping hydrogen atoms in steels at ferrite/cementite interfaces. 2. Adsorption theory / Vestn. YuUrGU. Ser. Metallurg. 2014. Vol. 14. N 3. P. 30 – 39 [in Russian].

16. Vainman A. B., Melekhov R. K., Smiyan O. D. Hydrogen embrittlement of high-pressure boiler elements. — Kiev: Naukova dumka, 1991. — 272 p. [in Russian].

17. Karpenko G. V., Kripyakevich R. I. The influence of hydrogen on the properties of steel. — Moscow: Metallurgizdat, 1962. — 201 p. [in Russian].

18. Kwon D. I., Asaro R. J. Hydrogen-assisted ductile fracture in spheroidized 1518 steel / Acta Metallurgica et Materialia. 1990. Vol. 38 (8). P. 1595 – 1606. DOI: 10.1016/0956-7151(90)90127-3

19. Yakovlev Yu. A., Polyanskiy V. A., Sedova Yu. S., Belyaev A. K. Models of the influence of hydrogen on the mechanical properties of metals and alloys / Vestn. Perm. nats. issl. politekhn. univ. Mekh. 2020. N 3. P. 136 – 160 [in Russian]. DOI: 10.15593/perm.mech/2020.3.13

20. Andronov D. Y., et al. Application of multichannel diffusion model to analysis of hydrogen measurements in solid / International Journal of Hydrogen Energy. 2017. Vol. 42. N 1. P. 699 – 710. DOI: 10.1016/j.ijhydene.2016.10.126

21. Belyaev A. K., Kudinova N. R., Polyanskiy V. A., Yakovlev Yu. A. Description of deformation and destruction of materials containing hydrogen using a rheological model / St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2015. Vol. 3. N 225. P. 134 – 149 [in Russian]. DOI: 10.5862/jpm.225.14

22. Bueno A. H. S., Moreira E. D., Gomes J. A. C. P. Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel / Engineering Failure Analysis. 2014. Vol. 36. P. 423 – 431. DOI: 10.1016/j.engfailanal.2013.11.012

23. Sedova Yu. S., Bessonov N. M., Polyanskiy V. A. Influence of the hydrogen skin effect on the nature of destruction of steel samples / St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022. Vol. 15. N 3. P. 169 – 184 [in Russian]. DOI: 10.18721/jpm15313

24. Merson D. L., Polyanskiy A. M., Polyanskiy V. A., et al. Correlation of the mechanic parameters of steel 35G2 with hydrogen content and parameters of acoustic emission / Industr. Lab. Mater. Diagn. 2008. Vol. 74. N 2. P. 57 – 60 [in Russian].

25. Polyanskiy A. M., Popov-Diumin D. B., Polyanskiy V. A. Determination of hydrogen binding energy in various materials by means of absolute measurements of its concentration in solid probe / Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. — Dordrecht: Springer Netherlands, 2007. P. 681 – 692. DOI: 10.1007/978-1-4020-5514-0_85

26. Polyanskiy V. A. The influence of hydrogen with different binding energies on the structure and strength of materials. Doctoral Thesis. — St. Petersburg, 2010. — 325 p. [in Russian].

27. Kolachev B. A. Hydrogen embrittlement of metals. — Moscow: Metallurgiya, 1985. — 216 p. [in Russian].

28. Drexler A., et al. Critical verification of the effective diffusion concept / International journal of hydrogen energy. 2023. Vol. 48. N 20. P. 7499 – 7514. DOI: 10.1016/j.ijhydene.2022.11.105

29. Gorchakov L. N., Dobrotvorskiy A. M., Romanova L. M., Val’kovskaya S. A. The influence of hydrogen pressure on the mechanism of hydrogen corrosion of carbon steel / Khim. Tekhn. 2016. N 1. P. 46 – 49 [in Russian].

30. Hirth J. P. Effects of hydrogen on the properties of iron and steel / Metallurgical Transactions A. 1980. Vol. 11. P. 861 – 890. DOI: 10.1007/bf02654700


Review

For citations:


Shalagaev V.V., Nechaeva A.V., Polyanskiy V.A., Polyanskiy A.M., Yakovlev Yu.A. Degradation of steel 20 during cathodic polarization and hydrogen embrittlement of steam boiler screen pipes during operation. Industrial laboratory. Diagnostics of materials. 2024;90(10):46-55. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-10-46-55

Views: 185


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)