Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of creep parameters of VVER reactor steel 15Kh2NMFA-A AT temperatures of 500 – 1200°C

https://doi.org/10.26896/1028-6861-2024-90-10-56-66

Abstract

The paper is devoted to the study of the creep characteristics of 15Kh2NMFA-A vessel steel in the temperature range of 500 – 1200 °C, which can be achieved during emergency operating conditions of VVER-type nuclear reactors. An analysis of the creep curves of the 15Kh2NMFA-A steel in the studied temperature range obtained during specimens tensile tests was carried out with the construction of the parametric Larson – Miller relationship. It is shown that in the temperature range of 600 – 850 °C the generalized Larson – Miller temperature dependence has a changed slope, resulting in a high error in estimating the time to fracture of 15Kh2NMFA-A steel under creep conditions in this temperature range. To reveal the reasons for the change in creep resistance in the specified temperature range, the studies of the metal microstructure using optical and scanning electron microscopy on specimens in the initial state and after creep testing were carried out. Studies of the microstructure of steel have shown that in the temperature range of 600 – 700 °C, coagulation of V(CN) type carbonitrides occurs, leading to a change in the slope of the Larson – Miller parametric relationship. It is shown that in the temperature range of Ac1Ac3 there is an abrupt change in creep characteristics associated with phase transformations. The feasibility of dividing the Larson – Miller parametric relationship into several sections depending on temperature, taking into account structural changes in the steel, is substantiated, which makes it possible to increase the accuracy of estimating the destruction time of 15Kh2NMFA-A steel by at least an order of magnitude. Based on the results of the study, a calculated dependence of the long-term strength of steel on temperature was obtained on a basis of 6,24 and 120 hours.

About the Authors

E. V. Terentyev
National Research University «Moscow Power Engineering Institute»
Russian Federation

Egor V. Terentyev

14, Krasnokazarmennaya ul., Moscow, 111250



A. Yu. Marchenkov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Artem Yu. Marchenkov

14, Krasnokazarmennaya ul., Moscow, 111250



V. D. Loktionov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Vladimir D. Loktionov

14, Krasnokazarmennaya ul., Moscow, 111250



I V. Lyubashevskaya
Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences
Russian Federation

Irina V. Lyubashevskaya

15, Lavrentyev prosp., Novosibirsk, 630090



D. V. Chuprin
Lavrentyev Institute of Hydrodynamics of Siberian Branch of Russian Academy of Sciences
Russian Federation

Danila V. Chuprin

15, Lavrentyev prosp., Novosibirsk, 630090



K. T. Borodavkina
National Research University «Moscow Power Engineering Institute»
Russian Federation

Kseniya T. Borodavkina

14, Krasnokazarmennaya ul., Moscow, 111250



G. B. Sviridov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Georgiy B. Sviridov

14, Krasnokazarmennaya ul., Moscow, 111250



References

1. Theofanous T. G., Liu C., Addition S., et al. In-vessel Coolability and Retention of a Core Melt. Vol. 1. — U.S.A., Illinois: Center for risk studies and Safety, 1996. — 441 p. DOI: 10.2172/491623

2. Theofanous T. G., Angelini S. Natural Convection for In-Vessel Retention at Prototypic Rayleigh Numbers / Nuclear Engineering and Design. 2000. Vol. 200. P. 1 – 9. DOI: 10.1016/S0029-5493(00)00239-9

3. Rempe J. L., Knudson D. L., Condie K. G., et al. Corium retention for high power reactors by an in-vessel core catcher in combination with External Reactor Vessel Cooling / Nuclear Engineering and Design. 2004. Vol. 230. P. 293 – 309. DOI: 10.1016/j.nucengdes.2003.11.031

4. Loktionov V., Mukhtarov E., Lyubashevskaya I. Features of heat and deformation behavior of a VVER-600 reactor pressure vessel under conditions of inverse stratification of corium pool and worsened external vessel cooling during the severe accident. Part 1. The effect of the inverse melt stratification and in-vessel top cooling of corium pool on the thermal loads acting on VVER-600’s reactor pressure vessel during a severe accident / Nuclear Engineering and Design. 2018. Vol. 326. P. 320 – 332. DOI: 10.1016/j.nucengdes.2017.11.015

5. Loktionov V., Mukhtarov E., Lyubashevskaya I. Features of heat and deformation behavior of a VVER-600 reactor pressure vessel under conditions of inverse stratification of corium pool and worsened external vessel cooling during the severe accident. Part 2. Creep deformation and failure of the reactor pressure vessel / Nuclear Engineering and Design. 2018. Vol. 327. P. 161 – 171. DOI: 10.1016/j.nucengdes.2017.12.018

6. Fil N. S., Borisov L. N., Kurbaev S. S., et al. Analysis of WWER-1000 Core Melt Scenarious using Different Computer Codes / Proceedings of the 10th International Topical Meeting On Nuclear Reactor Thermal Hydraulics (nureth-10), 2003.

7. Sorokin Yu. S., Shchekoldin V. V., Borisov L. N., Fil N. S. Analysis of typical WWER-1000 Severe Accident scenarios / Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants, 2004. P. 1096 – 1105.

8. Zvonarev Yu. A., Volchek A. M., Kobzar V. L., Budaev M. A. ASTEC application for in-vessel melt retention modeling in VVER plants / Nuclear Engineering and Design. 2014. Vol. 272. P. 224 – 236. DOI: 10.1016/j.nucengdes.2013.06.044

9. Carénini L., Fichot F., Seignour N. Modelling issues related to molten pool behaviour in case of In-Vessel Retention Strategy / Annals of Nuclear Energy. 2018. Vol. 118. P. 363 – 374. DOI: 10.1016/j.anucene.2018.04.032

10. Gencheva R., Stefanova A., Groudev P., et al. Study of invessel melt retention for VVER-1000/v320 reactor / Nuclear Engineering and Design. 2016. Vol. 298. P. 208 – 217. DOI: 10.1016/j.nucengdes.2015.12.031

11. Mao J. F., Zhu J. W., Bao S. Y., et al. Study on structural failure of RPV with geometric discontinuity under severe accident / Nuclear Engineering and Design. 2016. Vol. 307. P. 354 – 363. DOI: 10.1016/j.nucengdes.2016.07.027

12. Matejovic P., Barnak M., Bachraty M., et al. Adoption of in-vessel retention concept for VVER440/V213 reactors in Central European Countries / Nuclear Engineering and Design. 2017. Vol. 314. P. 93 – 109. DOI: 10.1016/j.nucengdes.2017.01.015

13. Sarkar A., Sunil S., Kumawat B., et al. High temperature creep behavior of a low alloy Mn-Mo-Ni reactor pressure vessel steel / Journal of Nuclear Materials. 2021. Vol. 557. N 153293. DOI: 10.1016/j.jnucmat.2021.153293

14. Nikulin S. A., Rogachev S. O., Belov V. A., et al. Structure and properties of steels for manufacture of core catcher vessel of nuclear reactor / Izv. Vuzov. Cher. Met. 2023. Vol. 66. N 3. P. 356 – 366 [in Russian]. DOI: 10.17073/0368-0797-2023-3-356-366

15. Volkov I. A., Igumnov L. A., Tarasov I. S., et al. Evaluating long-term strength of structural elements subjected to thermal-mechanical loading / Problems of Strength and Plasticity. 2018. Vol. 80. N 4. P. 495 – 512 [in Russian]. DOI: 10.32326/1814-9146-2018-80-4-494-512

16. Gao Z., Lu C., He Y., et al. Influence of phase transformation on the creep deformation mechanism of SA508 Gr. 3 steel for nuclear reactor pressure vessels / Journal of Nuclear Materials. 2019. Vol. 519. P. 292 – 301. DOI: 10.1016/j.jnucmat.2019.04.006

17. Tardif N., Coret M., Combescure A. Experimental study of the fracture kinetics of a tubular 16MnNiMo5 steel specimen under biaxial loading at 900 and 1000°C. Application to the rupture of a vessel bottom head during a core meltdown accident in a pressurized water reactor / Nuclear Engineering and Design. 2011. Vol. 241. P. 755 – 766. DOI: 10.1016/j.nucengdes.2011.01.026

18. Xie L. J., Ning D., Yang Y. Z. Experimental study on creep characterization and lifetime estimation of RPV material at 723 – 1023 K / Journal of Materials Engineering and Performance. 2017. Vol. 26. P. 644 – 652. DOI: 10.1007/s11665-016-2498-1

19. Markov S. I., Balikoyev A. G., Dub V. S., et al. The complex research aimed at developing high-strength steels for hull prospective nuclear power, including supercritical coolant parameters / Tyazh. Mashinostr. 2016. N 7 – 8. P. 2 – 8 [in Russian].

20. Timofeev M. N., Galyatkin S. N., Fomenko A. V., Shubin O. V. Analysis of the experience in manufacturing the reactor body and the upper block of the VVER-TOI from 15Cr2NiMoVA class 1 and 15Cr2MoVA-A mod. A steels / Tyazh. Mashinostr. 2021. N 9. P. 9 – 17 [in Russian].

21. Zemzin V. N. Heat resistance of welded joints. — Leningrad: Mashinostroenie, 1972. — 272 p. [in Russian].

22. Kucharova K., Sklenicka V., Kvapilova M., Svoboda M. Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23) / Materials Characterization. 2015. Vol. 109. P. 1 – 8. DOI: 10.1016/j.matchar.2015.08.008

23. Getsov L. B., Semenov A. S., Golubovsky E. R., et al. Features and uniform description of I, II, and III stages of the creep in single-crystal superalloys / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 3. P. 44 – 54 [in Russian]. DOI: 10.26896/1028-6861-2020-86-3-44-54

24. Kim V. A., Lysenko V. V., Afanaseva A. A., Turkmenov Kh. I. Study of the structural degradation of steel 15Kh5M upon continuous duty / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 1. P. 38 – 43 [in Russian]. DOI: 10.26896/1028-6861-2020-86-1-38-43

25. Radchenko V. P., Afanas’eva E. A., Saushkin M. N. Prediction of creep and long-term strength of material using a leader sample under ductile fracture conditions / Journal of Applied Mechanics and Technical Physics. 2023. Vol. 64. N 6. P. 199 – 209 [in Russian]. DOI: 10.15372/PMTF202315261

26. Claesson E., Magnusson H., Kohlbrecher J., et al. Carbide Precipitation during Processing of Two Low-Alloyed Martensitic Tool Steels with 0. 11 and 0. 17 V/Mo Ratios Studied by Neutron Scattering, Electron Microscopy and Atom Probe / Metals. 2022. Vol. 12. N 5. P. 758. DOI: 10.3390/met12050758

27. Gladshtein V. I. The Impact of Metal Micro-Damages on the Lifetime of Cast Casing of the Valve / Industr. Lab. Mater. Diagn. 2017. Vol. 83. N 8. P. 46 – 52 [in Russian].

28. Kvapilová M., Ohanková M., Král P., et al. Characterization of creep properties and the microstructure of a service-exposed low alloy CrMoV steel steam pipe / Materials Science and Engineering A. 2022. Vol. 853. P. 143684. DOI: 10.1016/j.msea.2022.143684

29. Epishin A. I., Alymov M. I. Determination of the volume fraction of the microporosity in nickel-based superalloy single crystals / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 11. P. 32 – 40 [in Russian]. DOI: 10.26896/1028-6861-2022-88-11-32-40

30. Loktionov V., Lyubashevskaya I., Terentyev E. The regularities of creep deformation and failure of the VVER’s pressure vessel steel 15Kh2NMFA-A in air and argon at temperature range 500 – 900 °C / Nuclear Materials and Energy. 2021. Vol. 28. N 101019. DOI: 10.1016/j.nme.2021.101019

31. Loktionov V., Lyubashevskaya I., Terentyev E. Regularities of the creep deformation and failure of 15Kh2NMFA-A steel within the temperature range of 900 – 1200°C / International Journal of Pressure Vessels and Piping. 2022. Vol. 199. N 104745. DOI: 10.1016/j.ijpvp.2022.104745

32. Loktionov V., Lyubashevskaya I., Sosnin O., Terentyev E. Short-term strength properties and features of high-temperature deformation of VVER reactor pressure vessel steel 15Kh2NMFA-A within the temperature range 20 – 1200°C / Nuclear Engineering and Design. 2019. Vol. 352. N 110188. DOI: 10.1016/j.nucengdes.2019.110188

33. Dudko V., Yuzbekova D., Gaidar S., et al. Tempering behavior of novel low-alloy high-strength steel / Metals. 2022. Vol. 12. N 2177. DOI: 10.3390/met12122177

34. Lu C. Y., He Y. M., Yang J. G., et al. An investigation of phase transition on the microstructural characteristic and creep behavior for the SA508 Gr. 3 steel used for nuclear reactor pressure vessels / Materials Science and Engineering A. 2017. Vol. 711. P. 659 – 669. DOI: 10.1016/j.msea.2017.11.073

35. Baker T. N. Processes, microstructure and properties of vanadium microalloyed steels / Materials Science and Technology. 2009. Vol. 25. P. 1083 – 1107. DOI: 10.1179/174328409X453253


Review

For citations:


Terentyev E.V., Marchenkov A.Yu., Loktionov V.D., Lyubashevskaya I.V., Chuprin D.V., Borodavkina K.T., Sviridov G.B. Research of creep parameters of VVER reactor steel 15Kh2NMFA-A AT temperatures of 500 – 1200°C. Industrial laboratory. Diagnostics of materials. 2024;90(10):56-66. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-10-56-66

Views: 271


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)