

Rosk digestion rocks using the ammonium sulfate and ammonium bifluoride mixture for element analysis
https://doi.org/10.26896/1028-6861-2024-90-11-17-28
Abstract
The new sample preparation method of rock samples for elemental analysis using emission spectral analysis (ICP-AES) and inductively coupled plasma mass spectral analysis (ICP-MS) is proposed. International standard samples of rock composition GM (granite), JA-2 (andesite), BHVO-1 (basalt) and JR-1 (rhyolite) were the material for the study. The major elements detection in terms of oxides TiO2, Al2O3, MnO, CaO, MgO, Fe2O3, Na2O, K2O, P2O5, was carried out by inductively coupled plasma atomic emission spectrometry (ICP-AES). The ICP-MS method was used to determine the trace element composition of the studied samples: Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th, U. The rocks interaction with the bifluoride and ammonium sulfate mixture at heating up to 350°C for 2 h was applied for complete decomposition of minerals. It was found that at the process all components of the investigated samples are completely dissolved in 13% nitric acid. The elemental analysis for micro- and macro-components of the solutions has shown good agreement with the certified characteristics, which indicates the completeness of the rock components transition into solution. The interaction mechanism of rock minerals with ammonium bifluoride and ammonium sulfate was investigated. It has been established that the combination of fluorination and sulfation stages allows for the effective decomposition of silicate rocks. This is achieved by breaking Si–O bonds with NH4HF2 with the formation of simple and complex fluorides and converting insoluble fluorides of the raw material elements into more soluble sulfates with (NH4)2SO4. It was shown that in the sample preparation process silicon being the main rocks component is sublimated in the form of (NH4)2SiF6 as a result of which a significant mass reduction of dissolved salts was achieved. The advantage of the proposed method, for example, compared to acid decomposition, is its rapidity and completeness of opening due to the reduction in the number of stages in the process of decomposition of rocks.
About the Authors
Galina F. KrisenkoRussian Federation
Galina F. Krisenko,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
Natalia V. Zarubina
Russian Federation
Natalia V. Zarubina,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
Elena E. Dmitrieva
Russian Federation
Elena E. Dmitrieva,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
Maxim G. Blokhin
Russian Federation
Maxim G. Blokhin,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
Vladimir P. Molchanov
Russian Federation
Vladimir P. Molchanov,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
Mikhail A. Medkov
Russian Federation
Mikhail A. Medkov,
159, prosp. 100-letiya Vladivostoka, Vladivostok, 690022.
References
1. Zhong Y., Ji M., Hu Y., et al. Progress of environmental sample preparation for elemental analysis / J. Chromatogr. A. 2022. Vol. 1681. 463458. DOI: 10.1016/j.chroma.2022.463458
2. Zhang W., Hu Z. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples / Spectrochim. Acta, Part B. 2019. Vol. 160. 105690. DOI: 10.1016/j.sab.2019.105690
3. Whitty-Léveillé L., Turgeon K., Bazin C., Larivière D. A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices / Anal. Chim. Acta. 2017. Vol. 961. P. 33 – 41. DOI: 10.1016/j.aca.2017.01.045
4. Balaram V., Subramanyam K. S. V. Sample preparation for geochemical analysis: Strategies and significance / Adv. Sample Prep. 2022. Vol. 1. 100010. DOI: 10.1016/j.sampre.2022.100010
5. Bokhari S. N. H., Meisel T. C. Method Development and Optimisation of Sodium Peroxide Sintering for Geological Samples / Geostand. Geoanal. Res. 2017. Vol. 41. N 2. P. 181 – 195. DOI: 10.1111/ggr.12149
6. Khanchuk A. I., Molchanov V. P., Blokhin M. G., Medkov M. A. Approaches to the development of analytical methods and a technology for the extraction of useful components from graphite-bearing rocks / Theor. Found. Chem. Eng. 2015. Vol. 49. N 4. P. 573 – 579. DOI: 10.1134/S0040579515040090
7. Yasnygina T. A., Markova M. E., Rasskazov S. V., Pakhomova N. N. Determination of Rare-Earth Elements Y, Zr, Nb, Hf, Ta, Th in Reference Specimens from DB Series Using Inductuvely Coupled Plasma Mass-Spectromentry (ICP-MS) / Industr. Lab. Mater. Diagn. 2015. Vol. 81. N 2. P. 10 – 20 [in Russian].
8. Chernikova I. I., Potokina A. A., Farafonova O. V., Ermolaeva T. N. Development of ICP-AES method for analysis of iron ore raw materials / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 2. P. 21 – 29 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-21-29
9. Korotkova N. A., Petrova K. V., Baranovskaya V. B. Analysis of cerium-subtituted yttrium nary iron garnets by inductively coupled plasma atomic emission spectrometry with preliminary microwave decomposition / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 11. P. 24 – 33 [in Russian]. DOI: 10.26896/1028-6861-2023-89-11-24-33
10. Palesskiy S. V., Nikolaeva I. V., Koz’menko O. A. Microwave preparation of geological samples in UltraWAVE system for the determination of platinum group elements and rhenium by mass-spectrometric isotope dilution / Geochem. Int. 2023. Vol. 61. N 7. P. 744 – 749. DOI: 10.1134/s0016702293070042
11. O’Hara M. J., Kellogg C. M., Parker C. M., et al. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis / Chem. Geol. 2017. Vol. 466. N 5. P. 341 – 351. DOI: 10.1016/j.chemgeo.2017.06.023
12. Zhang W., Hu Z., Liu Y., et al. Total rock dissolution using ammonium bifluoride (NH4HF2) in screw-top teflon vials: a new development in open-vessel digestion / Anal. Chem. 2012. Vol. 84. N 24. P. 10686 – 10693. DOI: 10.1021/ac302327g
13. Liu H., Hu Z., Tao H., et al. Evaluation of the digestion capability of ammonium bifluoride for the determination of major and trace elements in Ti-rich minerals by ICP-MS / J. Anal. At. Spectrom. 2023. Vol. 38. N 5. P. 1146 – 1154. DOI: 10.1039/D3JA00012E
14. Újvári G., Urs K., Horschinegg M., et al. Rapid decomposition of geological samples by ammonium bifluoride (NH4HF2) for combined Hf-Nd-Sr isotope analyses / Rapid Commun. Mass Spectrom. 2021. Vol. 35. N 11. e9081. DOI: 10.1002/rcm.9081
15. Sibrina M. A., Zhilkina A. V., Tyurin D. A., et al. Microelement composition of anorthosite standard sample: combination of effective method of acid mineralization and MS-ICP / Proc. of IV All-Russian conference on analytical spectroscopy with international participation. Krasnodar, 2023. P. 163 [in Russian].
16. Wilding M. W., Rhodes D. W. Solubility Isotherms for Calcium Fluoride in Nitric Acid Solution / J. Chem. Eng. Data. 1970. Vol. 15. N 2. P. 297 – 298.
17. Jumashev K., Narembekova A., Katrenov B. B. Reaction mechanism of calcium bifluoride interaction with ammonium sulfate / Vestn. Karagand. Univ., Ser. Khim. 2019. Vol. 95. N 3. P. 83 – 87 [in Russian]. DOI: 10.31489/2019Ch3/83-87
18. Medkov M. A., Krysenko G. F., Epov D. G., Dmitrieva E. E. Processing of some minerals using hydrodifluoride and ammonium sulfate / Trends Chem. Eng. 2022. Vol. 20. P. 91 – 102.
19. Nikolaeva I. V., Palesskii S. V., Koz’menko O. A., Anoshin G. N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS) / Geochem. Int. 2008. Vol. 46. N 10. P. 1016 – 1022. DOI: 10.1134/S0016702908100066
20. Medkov M. A., Krysenko G. F., Epov D. G., Dmitrieva E. E. Decomposition of mineral raw materials using a mixture of hydrodifluoride and ammonium sulfate / Khim. Tekhnol. 2022. Vol. 23. N 10. P. 444 – 450 [in Russian]. DOI: 10.31044/1684-5811-2022-23-10-444-450
21. Krysenko G. F., Epov D. G., Merkulov E. B., Medkov M. A. Studying the Possibility for Defluorination of Calcium and Rare-Earth Fluorides by Ammonium Sulfate / Theor. Found. Chem. Eng. 2021. Vol. 55. N 5. P. 996 – 1001. DOI: 10.1134/S0040579521320026
Review
For citations:
Krisenko G.F., Zarubina N.V., Dmitrieva E.E., Blokhin M.G., Molchanov V.P., Medkov M.A. Rosk digestion rocks using the ammonium sulfate and ammonium bifluoride mixture for element analysis. Industrial laboratory. Diagnostics of materials. 2024;90(11):17-28. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-11-17-28