Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Monitoring of the composite materials destruction kinetics using acoustic-emission diagnostics

https://doi.org/10.26896/1028-6861-2024-90-11-53-66

Abstract

The structural-phenomenological concept (SPC) and model of the evolution of destruction of a composite material are considered, connecting its load-bearing capacity with the kinetics of redistribution of the weight content of micro, meso and macroscale damage during loading. By monitoring changes in the values of partial accumulation of damage in the structure of the material at different scale levels in the loading mode, and comparing them with threshold values, it is possible to control the actual state of the load-bearing capacity of the product. The correspondence between the surface of micro, meso, macro-destruction of structural bonds of a structural material and the energy parameters of the acoustic emission pulses recorded in this case, forming in the field of descriptors of relative energy (Ei) and maximum amplitude (um), clusters of the lower (L), middle (M), and upper (H) levels with boundaries: Ei < 85 dB, um < 55 dB; Ei = 85 – 115 dB, um = 55 – 80 dB; Ei > 115 dB, um > 80 dB. An algorithm and software (software) have been developed that controls the dynamics of the redistribution of parameters of partial activity (Ńi) and weight content (Wi) of location pulses in energy clusters characterizing the kinetics of micro-, meso- and macro-damage «in situ» of violation of the structural bonds of a product under loading mode. By comparing the current values of the most informative parameters WL and WM, with their threshold values [WL] and [WM], corresponding to the state of the product when the material is destroyed, we get the opportunity to control the actual level of the load-bearing capacity of the structure. The developed concept, algorithm and software were used to evaluate the load-bearing capacity of the panel mesh structure during compression tests under loading conditions.

About the Authors

Yury G. Matvienko
Mechanical Engineering Research Institute Russian Academy of Sciences
Russian Federation

Yury G. Matvienko, 

4, M. Kharitonievsky per., Moscow, 101990.



Nikolai A. Makhutov
Mechanical Engineering Research Institute Russian Academy of Sciences
Russian Federation

Nikolai A. Makhutov, 

4, M. Kharitonievsky per., Moscow, 101990.



Igor E. Vasiliev
Mechanical Engineering Research Institute Russian Academy of Sciences
Russian Federation

Igor E. Vasiliev,

4, M. Kharitonievsky per., Moscow, 101990.



Dmitry V. Chernov
Mechanical Engineering Research Institute Russian Academy of Sciences
Russian Federation

Dmitry V. Chernov,

4, M. Kharitonievsky per., Moscow, 101990.



References

1. Alekseeva M. S., Alimov M. A., Arkhipov V. E., et al. Research and justification of the strength and safety of machines. — Moscow: Znanie, 2023. — 832 p. [in Russian].

2. Makhutov N. A. Safety and risks: systems research and development. — Novosibirsk: Nauka, 2017. — 724 p. [in Russian].

3. Matvienko Yu. G. Fundamentals of physics and fracture mechanics. — Moscow: Fizmatlit, 2022. — 144 p. [in Russian].

4. Composite materials. Handbook. Vol. 3. Polymer Matrix Composites, Materials Usage, Design, and Analysis / Departments and Agencies of the Department of Defense USA. 2002. Doc. N. MIL-HDBK-17-3FV.

5. Vasiliev V. V. Composite materials: Handbook. — Moscow: Mashinostroenie, 1990. — 512 p. [in Russian].

6. Lubin G. Handbook of composites. — LU: Springer Science & Business Media, 2013. — 804 p.

7. Yi X.-S., Du S., Zhang L. Composite Materials Engineering. Fundamentals of Composite Materials. Vol. 1. — Singapore: Springer, 2017. — 786 p.

8. Ilyushin A. A. On one theory of long-term strength / Izv. AN SSSR. MTT. 1967. N 3. P. 21 – 35 [in Russian].

9. Cherepanov G. P. Invariant Integrals in Physics. — Switzerland: Springer Nature AG, 2019. — 259 p.

10. Bolotin V. V. Resource of machines and structures. — Moscow: Mashinostroenie, 1990. — 448 p. [in Russian].

11. Serensen S. V., Kogaev V. P., Shneiderovich R. M. Load-bearing capacity and strength calculations of machine parts. — Moscow: Mashinostroenie, 1975. — 488 p. [in Russian].

12. Panin V. E., Grinyaev Yu. V., Danilov V. I., et al. Structural levels of plastic deformation and destruction. — Novosibirsk: Nauka, 1990. — 255 p. [in Russian].

13. Kachanov L. M. Fundamentals of fracture mechanics. — Moscow: Nauka, 1974. — 312 p. [in Russian].

14. Rabotnov Yu. N. Creep of structural elements. — Moscow: Nauka, 2014. — 752 p. [in Russian].

15. Gulyaev A. P. Metallurgy. — Moscow: Metallurgiya, 1978. — 647 p. [in Russian].

16. Rybin V. V. Large plastic deformations and destruction of metals. — Moscow: Metallurgiya, 1986. — 224 p. [in Russian].

17. Botvina L. R. Destruction, kinetics, mechanisms, general patterns. — Moscow: Nauka, 2008. — 334 p. [in Russian].

18. Zavoichinskaya E. B. General patterns and criteria for the destruction of solids at different scale levels under long-term loading (General article) / Zavod. Lab. Mater. Diagn. 2022. V. 88. N 7. P. 48 – 62 [in Russian]. DOI: 10.26896/1028-6861-2022-88-7-48-62

19. Makhutov N. A., Matvienko Y. G., Ivanov V. I., et al. Rupture Tests of Reinforcing Fibers and a Unidirectional Laminate Using Acoustic Emissions / Instrum. Exp. Tech. 2022. Vol. 65. N 2. P. 305 – 313. DOI: 10.1134/S0020441222020014

20. Matvienko Y. G., Vasil’ev I. E., Chernov D. V. Damage and failure of unidirectional laminate by acoustic emission combined with video recording / Acta Mech. 2021. Vol. 232. P. 1889 – 1900. DOI: 10.1007/s00707-020-02866-6

21. Matvienko Yu. G., Vasilyev I. E., Chernov D. V. Study of the kinetics of destruction of structural bonds of a unidirectional laminate using acoustic emission and video recording / Zavod. Lab. Mater. Diagn. 2019. Vol. 85. N 11. P. 45 – 61 [in Russian]. DOI: 10.26896/1028-6861-2019-85-11-45-61

22. Kochenderfer M. J., Wheeler T. A., Wray K. H. Algorithms for Decision Making. — Cambridge, MA: The MIT Press, 2022. — 688 p.

23. Morozov E. M., Muizemnek A. Yu., Shadsky A. S. Mechanics of destruction. — Moscow: Lenand, 2016. — 459 p. [in Russian].

24. Matvienko Yu. G. Two-parameter fracture mechanics. — Moscow: MAIK «Nauka/Interperiodika», 2020. — 208 p. [in Russian].

25. Parton V. Z. Mechanics of elastic-plastic fracture: special problems of fracture mechanics. — Moscow: URSS, 2007. — 518 p.

26. Öchsne A. Continuum damage and fracture mechanics. — Singapore: Springer, 2016. — 167 p.

27. Anderson T. L. Fracture mechanism. Fundamental and application. — Kazakhstan: CPC Press, 2017. — 661 p.

28. Matvienko Yu. G. Models and criteria of fracture mechanics. — Moscow: Fizmatlit, 2006. — 318 p. [in Russian].

29. Matvienko Yu. G., Vasilyev I. E., Chernov D. V., Elizarov S. V. Criteria parameters for assessing the degree of degradation of composite materials during acoustic emission monitoring of products / Defektoskopiya. 2018. N 12. P. 3 – 11 [in Russian].

30. RF Pat. N 2690200. IPC C 1 G01N 29/14 (2006.01). Method of acoustic emission monitoring of the degree of degradation of the material structure and predicting the residual strength of the product / Vasiliev I. E., Matvienko Yu. G., Elizarov S. V., Chernov D. V.; applicant and patent holder Institute of Mechanical Science of the Russian Academy of Sciences. — N 2018122809; appl. 06/22/18; publ. 05/31/19, Byull. N 16. [in Russian].

31. Vasiliev I. E., Matvienko Yu. G., Chernov D. V., Elizarov S. V. Monitoring the accumulation of damage in the caisson of the MS-21 airframe stabilizer using acoustic emission / Probl. Mashinostr. Avtom. 2020. N 2. P. 118 – 141 [in Russian].

32. Matvienko Yu. G., Makhutov N. A., Vasiliev I. E., et al. Assessment of the residual strength of composite products based on the structural-phenomenological concept of damage and acoustic-emission diagnostics / Zavod. Lab. Mater. Diagn. 2022. Vol. 88. N 1. P. 69 – 81 [in Russian]. DOI: 10.26896/1028-6861-2022-88-I-1-69-81

33. RF Pat. N 2787964. IPC C 1 G01N 29/14 (2006.01). Method for monitoring the bearing capacity of products / Vasiliev I. E., Matvienko Yu. G., Chernov D. V., Makhutov N. A., Elizarov S. V.; applicant and patent holder Institute of Mechanical Science of the Russian Academy of Sciences. — N 2022102162; appl. 01/31/22; publ. 01/13/23, Byull. N 2 [in Russian].

34. Matvienko Yu. G., Vasilyev I. E., Chernov D. V. Structural-phenomenological concept for monitoring the load-bearing capacity of structural elements made of composite materials / iPolytech Journal. 2023. Vol. 27. N 1. P. 39 – 47 [in Russian]. DOI: 10.21285/1814-3520-2023-1-39-47

35. Matvienko Yu. G., Vasilyev I. E., Chernov D. V., et al. Diagnostics using acoustic emission of the wing console of the MS-21 glider in the area of artificial damage during life tests of the structure / Vestn. Mashinostr. 2023. Vol. 102. N 8. P. 675 – 685 [in Russian]. DOI: 10.36652/0042-4633-2023-102-8-675-685

36. Matvienko Yu. G., Vasilyev I. E., Chernov D. V., Pankov V. A. Acoustic emission monitoring of the process of damage to the support column under cyclic loading conditions / Defektoskopiya. 2019. N 8. P. 24 – 33 [in Russian]. DOI: 10.1134/S0130308219080037


Review

For citations:


Matvienko Yu.G., Makhutov N.A., Vasiliev I.E., Chernov D.V. Monitoring of the composite materials destruction kinetics using acoustic-emission diagnostics. Industrial laboratory. Diagnostics of materials. 2024;90(11):53-66. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-11-53-66

Views: 177


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)