Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of plastic deformation heterogeneousity at the prefracture stage of copper-nickel alloy

https://doi.org/10.26896/1028-6861-2024-90-11-86-92

Abstract

The most important regularity of plastic deformation process is its tendency to localize at all stages. Localization accompanies plastic deformation from beginning to end (until failure), taking on various regularly changing forms along the way. Localization of plastic flow can cause destruction of materials during technological processes associated with large plastic deformations. In this regard, it is necessary to clarify the laws governing the localization of plastic deformation throughout the entire length of the strain — stress curve from the yield strength to the strength limit. Knowledge of the patterns of localization of plastic flow will allow us to formulate a criterion for predicting the plasticity reserve of materials. The use of the speckle photography method has proven promising in studying the characteristics of plastic deformation of metals. The spatial resolution of this method corresponds to the level of optical microscopy with a significant advantage in the size of the field of view. This method makes it possible to obtain the values of the components of the plastic distortion tensor of the working surface of the sample with an interval of 30 sec (the maximum displacement of surface points is 100 μm) and, ultimately, to analyze the evolution of localization patterns, as well as to determine the kinetic parameters of moving localization foci, which is its main advantage. In this work, the kinetics of development of localized plastic deformation sites in the polycrystalline copper-nickel alloy Cu-40%Ni-1.5%Mn was studied using speckle photography. It was possible to find out that the forms of localization are completely determined by the laws of strain hardening of the material operating at the corresponding stage of the process. The localization of plastic flow in a copper-nickel alloy has an autowave character. At the same time, at the yield site, stages of linear and parabolic strain hardening, as well as at the pre-fracture stage, the observed localization patterns are different types of autowave processes. Analysis of the characteristics of such processes made it possible to measure their propagation speed and wavelength. In conclusion, a method for identifying the source of destruction to predict the ductility reserve of metals is proposed.

About the Authors

Svetlana A. Barannikova
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Svetlana A. Barannikova, 

2/4, Akademicheskii prosp., Tomsk, 634055.



Sergey V. Kolosov
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Sergey V. Kolosov,

2/4, Akademicheskii prosp., Tomsk, 634055.



Polina V. Iskhakova
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Polina V. Iskhakova,

2/4, Akademicheskii prosp., Tomsk, 634055.



References

1. Bell J. F. Experimental foundations of the mechanics of deformable solids: in 2 volumes. — Moscow: Nauka, 1984. Vol. 1. — 596 p.; Vol. 2. — 431 p. [Russian translation].

2. Jones R., Wykes K. Holographic and speckle interferometry. – Moscow: Mir, 1986. — 328 p. [Russian translation].

3. Kobayashi A. Experimental mechanics. — Moscow: Mir, 1990. Book 1. — 615 p.; Book 2. — 551 p. [in Russian].

4. Gdoutos E. E. Experimental Mechanics. An Introduction. — Berlin: Springer, 2021. — 311 p.

5. Vladimirov A. P. Dynamic speckle interferometry of deformable bodies. — Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2004. — 241 p. [in Russian].

6. Rastogi P. K. Digital Speckle Pattern Interferometry and Related Techniques. — New York: Wiley-VCH, 2000. — 384 p.

7. Sutton M. A., Orteu J. J., Schreier H. W. Image Correlation for Shape, Motion and Deformation Mesurements. Basic Concepts, Theory and Applications. — Berlin: Springer, 2009. — 317 p.

8. Shibkov A. A., Zolotov A. E., Gasanov M. F., et al. Nonlinear dynamics of individual deformation bands of Portevin – Le Chatelier / Phys. Solid State. 2022. Vol. 64. N 11. P. 1603 – 1613. DOI: 10.21883/FTT.2022.11.53311.429

9. Shabadi R., Kumar S., Roven H. J., et al. Characterization of PLC band parameters using laser speckle technique / Mater. Sci. Eng. A. 2004. 364. P. 140 – 150. DOI: 10.1016/j.msea.2003.08.013

10. Tretyakova T. V., Wildeman V. E. Spatiotemporal heterogeneity of processes of inelastic deformation of metals. — Moscow: FizMatLit, 2016. — 120 p. [in Russian].

11. Luhmann T., Robson S., Kyle S., et al. Near-field photogrammetry and 3D vision. — Moscow: URSS, 2018. — 704 p. [in Russian].

12. Zuev L. B., Danilov V. I., Barannikova S. A. Physics of macrolocalization of plastic flow. — Novosibirsk: Nauka, 2008. — 327 p. [in Russian].

13. Ponomarev K. E., Strelnikov I. V., Antonov A. A., et al. Application of laser interferometry to the choice of processing modes by the criterion of the residual stress level / Industr. Lab. Mater. Diagn. 2020. Vol. 86. N 2. P. 54 – 60 [in Russian]. DOI: 10.26896/1028-6861-2020-86-2-54-60

14. Zuev L. B. Autowave plasticity. Localization and collective fashions. — Moscow: FizMatLit, 2018. — 208 p. [in Russian].

15. Zuev L. B., Khon Yu. A., Gorbatenko V. V. Physics of inhomogeneous plastic flow. — Moscow: FizMatLit, 2024. — 320 p. [in Russian].

16. Zavodchikov S. Yu., Zuev L. B., Kotrekhov V. A. Metallurgical issues of production of products from zirconium alloys. — Novosibirsk: Nauka, 2013. — 256 p. [in Russian].

17. McDonald R. J., Efstathiou C., Kurath P. The wavelike plastic deformation of single crystal copper / J. Eng. Mater. Technol. 2009. Vol. 131. No. 3. P. 7 – 13. DOI: 10.1115/1.3120410

18. Zbib H. M., de la Rubia T. D. A multiscale model of plasticity / Int. J. Plast. 2002. Vol. 18. No. 9. P. 1133 – 1163. DOI: 10.1016/S0749-6419(01)00044-4

19. Ohashi T., Kawamukai M., Zbib H. A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals / Int. J. Plast. 2007. Vol. 23. No. 5. P. 897 – 914. DOI: 10.1016/j.ijplas.2006.10.002

20. Kobelev N. P., Lebyodkin M. A., Lebedkina T. A. Role of self-organization of dislocations in the onset and kinetics of macroscopic plastic instability / Metall. Mater. Trans. A. 2017. Vol. 48. No. 3. P. 965 – 974. DOI: 10.1007/s11661-016-3912-x

21. Barannikova S. A., Nadezhkin M. V. Kinetics of plastic deformation localization bands in polycrystalline nickel / Metals. 2021. Vol. 11. N 9. P. 1440. DOI: 10.3390/met11091440

22. Smiryagin L. P., Smiryagina N. L., Belov A. V. Industrial non-ferrous metals and alloys. — Moscow: Metallurgiya, 1970. — 488 p. [in Russian].

23. Eder S. J., Grutzmacher P. G., Ripoil M. R., et al. Effect of temperature on the de formation behavior of copper nickel alloys under sliding / Materials. 2021. Vol. 14(1). P. 60. DOI: 10.3390/ma14010060

24. Khlebnikova Y. V., Rodionov D. P., Gervas’eva I. V., et al. Conditions of sharp cube texture formation in thin tapes of Cu-Ni alloys for second-generation high-temperature superconductors / Tech. Phys. Lett. 2015. Vol. 41. P. 341 – 343. DOI: 10.1134/S1063785015040094

25. Tian H., Suo H. L., Mishin O. V., et al. Annealing behavior of a nanostructured Cu-45 at. % Ni alloy / J. Mater. Sci. 2013. Vol. 48. P. 4183 – 4190. DOI: 10.1007/s10853-013-7231-y

26. Trefilov V. I., Moiseev V. F., Pechkovsky E. P. Strain hardening and destruction of polycrystalline metals. — Kyiv: Naukova Dumka, 1987. — 256 p. [in Russian].

27. Barannikova S. A., Zuev L. B., Nadezhkin M. V. Plastic flow in Cu-Ni solid solutions as an autowave process / Phys. Solid State. 2023. Vol. 65. N 3. P. 444 – 450. DOI: 10.21883/PSS.2023.03.55586.412

28. Zuev L. B., Barannikova S. A. Autowave physics of material plasticity / Crystals. 2019. 9(9): 458. P. 1 – 30. DOI: 10.3390/cryst9090458


Review

For citations:


Barannikova S.A., Kolosov S.V., Iskhakova P.V. Study of plastic deformation heterogeneousity at the prefracture stage of copper-nickel alloy. Industrial laboratory. Diagnostics of materials. 2024;90(11):86-92. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-11-86-92

Views: 250


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)